
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Introduction to the
C Programming Language

Introduction to C (3)

Garcia, Nikoli�

§ First Electronic General-
Purpose Computer

§ Blazingly fast

ú Multiply in 2.8ms!

ú 10 decimal digits x 10

decimal digits

§ But needed 2-3 days to
setup new program

§ Programmed with patch

cords and switches

ú At that time & before,

"computer" mostly referred

to people who did

calculations

ENIAC (U Penn, 1946)

Introduction to C (4)

Garcia, Nikoli�

§ First General Stored-
Program Computer

§ Programs held as
numbers in memory

ú This is the revolution:

It isn't just programmable,

but the program is just the

same type of data that the

computer computes on

ú Bits are not just the

numbers being

manipulated, but the

instructions on how to

manipulate the numbers!

§ 35-bit binary Twos
complement words

EDSAC (Cambridge, 1949)

Introduction to C (5)

Garcia, Nikoli�

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Compiler

Assembler

Hardware Architecture Description
(e.g., block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw x3, 0(x10)
lw x4, 4(x10)
sw x4, 0(x10)
sw x3, 4(x10)

1000 1101 1110 0010 0000 0000 0000 0000

1000 1110 0001 0000 0000 0000 0000 0100

1010 1110 0001 0010 0000 0000 0000 0000

1010 1101 1110 0010 0000 0000 0000 0100

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm [31:0]

Reg[rs2]

wb

Anything can be represented

as a number,

i.e., data or instructions

Introduction to C (6)

Garcia, Nikoli�

§ Kernighan and Ritchie
ú C is not a “very high-level”

language, nor a “big” one, and is
not specialized to any particular

area of application. But its

absence of restrictions and its

generality make it more

convenient and effective for

many tasks than supposedly
more powerful languages.

§ Enabled first operating
system not written in

assembly language!
ú UNIX - A portable OS!

Introduction to C (1/2)

Introduction to C (7)

Garcia, Nikoli�

§ Why C?

ú We can write programs that allow us to exploit underlying

features of the architecture

 memory management, special instructions, parallelism

§ C and derivatives (C++/Obj-C/C#) still one of the most
popular programming languages after >40 years!

§ If you are starting a new project where performance
matters use either Go or Rust

ú Rust, “C-but-safe”: By the time your C is (theoretically) correct

w/ all necessary checks it should be no faster than Rust

ú Go, “Concurrency”: Practical concurrent programming to take

advantage of modern multi-core microprocessors

Introduction to C (2/2)

Introduction to C (8)

Garcia, Nikoli�

Disclaimer

§ You will not learn how to fully code in C in these

lectures! You’ll still need your C reference
ú K&R is a must-have

ú Useful Reference: “JAVA in a Nutshell,” O’Reilly

 Chapter 2, “How Java Differs from C”

ú Brian Harvey’s helpful transition notes

 http:/ / inst.eecs.berkeley.edu/ ~cs61c/ resources/ HarveyNotesC1-3.pdf

§ Key C concepts: Pointers, Arrays, Implications for

Memory management
ú Key security concept: All of the above are unsafe : If your program

contains an error in these areas it might not crash immediately but

instead leave the program in an inconsistent (and often exploitable) state

þ

http://inst.eecs.berkeley.edu/~cs61c/resources/HarveyNotesC1-3.pdf

Introduction to C (10)

Garcia, Nikoli�

Compilation: Overview
§ C compilers map C programs directly into

architecture-specific machine code (string of 1s and 0s)

ú Unlike Java, which converts to architecture-independent

bytecode that may then be compiled by a just-in-time compiler

(JIT)

ú Unlike Python environments, which converts to a byte code at

runtime

 These differ mainly in exactly when your program is converted

to low-level machine instructions (“levels of interpretation”)

§ For C, generally a two part process of compiling .c files to
.o files, then linking the .o files into executables;

ú Assembling is also done (but is hidden, i.e., done automatically,

by default); we’ll talk about that later

Introduction to C (11)

Garcia, Nikoli�

C Compilation Simplified Overview (more later)

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C source files (text)

Machine code object files

Pre-built object

file libraries

Machine code executable file

Compiler/ assembler

combined here

Introduction to C (12)

Garcia, Nikoli�

Compilation: Advantages
§ Reasonable compilation time: enhancements in

compilation procedure (Makefiles) allow only

modified files to be recompiled

§ Excellent run-time performance: generally much

faster than Scheme or Java for comparable code
(because it optimizes for a given architecture)

ú But these days, a lot of performance is in libraries:

ú Plenty of people do scientific computation in Python!?!

 they have good libraries for accessing GPU-specific resources

 Also, many times python allows the ability to drive many other

machines very easily … wait for Spark™ lecture

 Also, Python can call low-level C code to do work: Cython

Introduction to C (13)

Garcia, Nikoli�

Compilation: Disadvantages
§ Compiled files, including the executable, are

architecture-specific, depending on processor type

(e.g., MIPS vs. x86 vs. RISC-V) and the operating
system (e.g., Windows vs. Linux vs. MacOS)

§ Executable must be rebuilt on each new system

ú I.e., “porting your code” to a new architecture

§ “Change ³ Compile ³ Run [repeat]” iteration cycle
can be slow during development

ú but make only rebuilds changed pieces, and can compile
in parallel: make -j

ú linker is sequential though ³ Amdahl’s Law

Introduction to C (14)

Garcia, Nikoli�

C Pre-Processor (CPP)

§ C source files first pass through macro processor, CPP, before
compiler sees code

§ CPP replaces comments with a single space

§ CPP commands begin with “#”

ú #include "file.h" / * Inserts file.h into output */

ú #include <stdio.h> / * Looks for file in standard
location, but no actual difference! */

ú #define PI (3.14159) / * Define constant */

ú #if/#endif / * Conditionally include text */

§ Use –save-temps option to gcc to see result of
preprocessing

ú Full documentation at: http://gcc.gnu.org/onlinedocs/cpp/

foo.c CPP foo.i Compiler

Introduction to C (15)

Garcia, Nikoli�

CPP Macros: A Warning...

§ You often see C preprocessor macros

defined to create small "functions"

ú But they aren't actual functions, instead it just

changes the text of the program

ú In fact, all #define does is string replacement

ú #define min(X,Y) ((X)<(Y)?(X):(Y))

§ This can produce, umm, interesting errors
with macros, if foo(z) has a side-effect

ú next = min(w, foo(z));

ú next = ((w)<(foo(z))?(w):(foo(z)));þ

Introduction to C (17)

Garcia, Nikoli�

C vs. Java (1/3)

C Java

Type of Language Function Oriented Object Oriented

Programming Unit Function Class = Abstract Data Type

Compilation
gcc hello.c creates

machine language code

javac Hello.java creates Java virtual

machine language bytecode

Execution
a.out loads and

executes program
java Hello interprets bytecodes

hello, world

#include <stdio.h>

int main(void)

{

printf("Hi\n");

return 0;

}

public class HelloWorld {

public static void

main(String[] args) {

System.out.println("Hi");

} }

Storage Manual (malloc,free)
New allocates & initializes,

Automatic (garbage collection) frees

17

From http:/ / www.cs.princeton.edu/ introcs/ faq/ c2java.html

http://www.cs.princeton.edu/introcs/faq/c2java.html

Introduction to C (18)

Garcia, Nikoli�

C vs. Java (2/3)

C Java

Comments (C99
same as Java)

/* … */ /* … */ or // … end of line

Constants #define, const final

Preprocessor Yes No

Variable declaration

(C99 same as Java)

At beginning of a

block
Before you use it

Variable naming

conventions
sum_of_squares sumOfSquares

Accessing a library
#include
<stdio.h>

import java.io.File;

18

From http:/ / www.cs.princeton.edu/ introcs/ faq/ c2java.html

http://www.cs.princeton.edu/introcs/faq/c2java.html

Introduction to C (19)

Garcia, Nikoli�

C vs. Java (3/3) …operators nearly identical
§ arithmetic: +, -, *, /, %

§ assignment: =

§ augmented assignment: +=, -=, *=, /=, %=, &=, |=, ^=,
<<=, >>=

§ bitwise logic: ~, &, |, ^

§ bitwise shifts: <<, >>

§ boolean logic: !, &&, ||

§ equality testing: ==, !=

§ subexpression grouping: ()

§ order relations: <, <=, >, >=

§ increment and decrement: ++ and --

§ member selection: ., ->
ú Slightly different than Java because there are both structures and pointers to structures, more later

§ conditional evaluation: ? :

19

Introduction to C (20)

Garcia, Nikoli�

§ Yes! It’s called the “C99” or “C9x” std

ú To be safe: “gcc -std=c99” to compile

ú printf(“%ld\n", __STDC_VERSION__); è

199901

§ References

ú en.wikipedia.org/wiki/C99

§ Highlights

ú Declarations in for loops, like Java

ú Java-like // comments (to end of line)

ú Variable-length non-global arrays

ú <inttypes.h>: explicit integer types

ú <stdbool.h> for boolean logic def’s

Has there been an update to ANSI C?

Introduction to C (21)

Garcia, Nikoli�

§ Yes! It’s called the “C11” (C18 fixes bugs…)
ú You need “gcc -std=c11” (or c17) to compile

ú printf(“%ld\n", __STDC_VERSION__); è 201112L

ú printf(“%ld\n", __STDC_VERSION__); è 201710L

§ References
ú en.wikipedia.org/wiki/C11_(C_standard_revision)

§ Highlights

ú Multi-threading support!

ú Unicode strings and constants

ú Removal of gets()

ú Type-generic Macros (dispatch based on type)

ú Support for complex values

ú Static assertions, Exclusive create-and-open, …

Has there been an update to C99?

Introduction to C (22)

Garcia, Nikoli�

§ To get the main function to accept

arguments, use this:

ú int main (int argc, char *argv[])

§ What does this mean?

ú argc will contain the number of strings on the

command line (the executable counts as one, plus

one for each argument). Here argc is 2:

 unix% sort myFile

ú argv is a pointer to an array containing the

arguments as strings (more on pointers later).

C Syntax: main

þ

Introduction to C (24)

Garcia, Nikoli�

§ What evaluates to FALSE in C?

ú 0 (integer)

ú NULL (pointer: more on this later)

ú Boolean types provided by C99’s

stdbool.h

§ What evaluates to TRUE in C?

ú …everything else…

ú Same idea as in Scheme

 Only #f is false, everything else is true!

C Syntax: True or False?

Introduction to C (25)

Garcia, Nikoli�

Typed Variables in C

25

Type Description Example

int
Integer Numbers (including negatives)

At least 16 bits, can be larger
0, 78, -217, 0x7337

unsigned
int

Unsigned Integers 0, 6, 35102

float Floating point decimal
0.0, 3.14159,

6.02e23

double Equal or higher precision floating point
0.0, 3.14159,

6.02e23

char Single character ‘a’, ‘D’, ‘\n’

long
Longer int,

Size >= sizeof(int), at least 32b

0, 78, -217,
301720971

long long
Even longer int,

size >= sizeof(long), at least 64b
31705192721092512

§ Must declare the type of data a variable will hold

ú Types can't change. E.g, int var = 2;

Introduction to C (26)

Garcia, Nikoli�

§ C: int should be integer type that target processor works

with most efficiently

§ Only guarantee:

ú sizeof(long long)
g sizeof(long) g sizeof(int) g sizeof(short)

ú Also, short >= 16 bits, long >= 32 bits

ú All could be 64 bits

ú This is why we encourage you to use intN_t and uintN_t!!

Integers: Python vs. Java vs. C

26

Language sizeof(int)

Python >=32 bits (plain ints), infinite (long ints)

Java 32 bits

C Depends on computer; 16 or 32 or 64

Introduction to C (27)

Garcia, Nikoli�

§ Constant is assigned a typed value once in the
declaration; value can't change during entire

execution of program
const float golden_ratio = 1.618;

const int days_in_week = 7;

const double the_law = 2.99792458e8;

ú You can have a constant version of any of the standard C

variable types

§ Enums: a group of related integer constants. E.g.,
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};

enum color {RED, GREEN, BLUE};

Consts and Enums in C

27

Introduction to C (28)

Garcia, Nikoli�

§ You have to declare the type of data you plan to return
from a function

§ Return type can be any C variable type, and is placed to

the left of the function name

§ You can also specify the return type as void
ú Just think of this as saying that no value will be returned

§ Also need to declare types for values passed into a function

§ Variables and functions MUST be declared before they are

used
int number_of_people () { return 3; }

float dollars_and_cents () { return 10.33; }

Typed Functions in C

28

Introduction to C (29)

Garcia, Nikoli�

Structs in C
§ Typedef allows you to define new types.

typedef uint8_t BYTE;

BYTE b1, b2;

§ Structs are structured groups of variables e.g.,
typedef struct {

int length_in_seconds;
int year_recorded;

} SONG;

SONG song1;
song1.length_in_seconds = 213;
song1.year_recorded = 1994;

SONG song2;
song2.length_in_seconds = 248;
song2.year_recorded = 1988;

29

Dot notation: x.y = value

Introduction to C (30)

Garcia, Nikoli�

C Syntax : Control Flow (1/2)
§ Within a function, remarkably close to Java

constructs (shows Java’s legacy) for control flow
ú A statement can be a {} of code or just a standalone statement

§ if-else
ú if (expression) statement

if (x == 0) y++;
if (x == 0) {y++;}
if (x == 0) {y++; j = j + y;}

ú if (expression) statement1 else statement2
 There is an ambiguity in a series of if/ else if/ else if you don't use {}s, so use

{}s to block the code
 In fact, it is a bad C habit to not always have the statement in {}s, it has

resulted in some amusing errors...

§ while
ú while (expression) statement
ú do statement while (expression);

30

Introduction to C (31)

Garcia, Nikoli�

C Syntax : Control Flow (2/2)
§ for
for (initialize; check; update) statement

§ switch
switch (expression){

case const1: statements
case const2: statements
default: statements

}

break;

ú Note: until you do a break statement things keep
executing in the switch statement

§ C also has goto
 But it can result in spectacularly bad code if you use it, so don't!

31

Introduction to C (32)

Garcia, Nikoli�

First Big C Program: Compute Sines table
#include <stdio.h>
#include <math.h>
int main(void)
{

int angle_degree;
double angle_radian, pi, value;

printf("Compute a table of the sine function\n\n");
pi = 4.0*atan(1.0); /* could also just use pi = M_PI */
printf("Value of PI = %f \n\n", pi);
printf("Angle\tSine\n");
angle_degree = 0;/* initial angle value */
while (angle_degree <= 360) { /* loop til angle_degree > 360 */

angle_radian = pi * angle_degree / 180.0;
value = sin(angle_radian);
printf ("%3d\t%f\n ", angle_degree, value);
angle_degree += 10; /* increment the loop index */

}
return 0;

}

PI = 3.141593

Angle Sine

0 0.000000

10 0.173648

20 0.342020

30 0.500000

40 0.642788

50 0.766044

60 0.866025

70 0.939693

80 0.984808

90 1.000000

… etc …

þ

Introduction to C (34)

Garcia, Nikoli�

C Syntax: Variable Declarations
§ Similar to Java, but with a few minor but

important differences
ú All variable declarations must appear before they

are used

ú All must be at the beginning of a block.

ú A variable may be initialized in its declaration;
if not, it holds garbage!
 the contents are undefined…

§ Examples of declarations:
ú Correct: { int a = 0, b = 10; …

ú Incorrect in ANSI C: for (int i=0; …

ú Correct in C99 (and beyond): for (int i=0;…

34

Introduction to C (35)

Garcia, Nikoli�

§ A lot of C has “Undefined Behavior”

ú This means it is often unpredictable behavior

 It will run one way on one computer…

 But some other way on another

 Or even just be different each time the program is

executed!

§ Often characterized as “Heisenbugs”

ú Bugs that seem random/ hard to reproduce, and

seem to disappear or change when debugging

ú Cf. “Bohrbugs” which are repeatable

An Important Note: Undefined Behavior…

35

Introduction to C (36)

Garcia, Nikoli�

§ Consider memory to be a single huge array:

ú Each cell of the array has an address associated with it.

ú Each cell also stores some value.

ú Do you think they use signed or unsigned numbers?

Negative address?!

§ Don’t confuse the address referring to a memory
location with the value stored in that location.

§ For now, the abstraction lets us think we have
access to > memory, numbered from 0…

Address vs. Value

23 42

101 102 103 104 105 ...

Introduction to C (37)

Garcia, Nikoli�

§ An address refers to a particular

memory location. In other words, it
points to a memory location.

§ Pointer: A variable that contains the

address of a variable.

Pointers

23 42

101 102 103 104 105 ...

x y

Location (address)

name

p

104

Introduction to C (38)

Garcia, Nikoli�

§ int *p;

ú Tells compiler that variable p is address of an int

§ p = &y;

ú Tells compiler to assign address of y to p

ú & called the “address operator” in this context

§ z = *p;

ú Tells compiler to assign value at address in p to z

ú * called the “dereference operator” in this context

Pointer Syntax

38

Introduction to C (39)

Garcia, Nikoli�

§ How to create a pointer:

& operator: get address of a variable

int *p, x;

Pointers

p ? x ?

x = 3;
p ? x 3

p =&x;
p x 3

§ How get a value pointed to?

* “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets

used 2 different

ways in this
example. In the

declaration to
indicate that p is

going to be a
pointer, and in
the printf to

get the value
pointed to by p.

Introduction to C (40)

Garcia, Nikoli�

§ How to change a variable pointed to?

ú Use dereference * operator on left of =

Pointers

p x 5*p = 5;

p x 3

Introduction to C (41)

Garcia, Nikoli�

§ Java and C pass parameters “by value”

ú procedure/ function/ method gets a copy of the

parameter, so changing the copy cannot change

the original

void addOne (int x) {

x = x + 1;

}

int y = 3;

addOne(y);

y is still = 3

Pointers and Parameter Passing (1/2)

Introduction to C (42)

Garcia, Nikoli�

§ How to get a function to change a value?

void addOne (int *p) {

*p = *p + 1;

}

int y = 3;

addOne(&y);

y is now = 4

Pointers and Parameter Passing (2/2)

Introduction to C (43)

Garcia, Nikoli�

§ Declaring a pointer just allocates space to

hold the pointer – it does not allocate

something to be pointed to!

§ Local variables in C are not initialized, they

may contain anything.

§ What does the following code do?

More C Pointer Dangers

void f()
{

int *ptr;
*ptr = 5;

}

Introduction to C (44)

Garcia, Nikoli�

§ Why use pointers?

ú If we want to pass a large struct or array, it’s easier /

faster / etc. to pass a pointer than the whole thing

 Otherwise we’d need to copy a huge amount of data

ú In general, pointers allow cleaner, more compact code

§ So what are the drawbacks?

ú Pointers are probably the single largest source of bugs in

C, so be careful anytime you deal with them

 Most problematic with dynamic memory

management—coming up next time

 Dangling references and memory leaks

Pointers in C … The Good, Bad, and the Ugly

44

þ

Introduction to C (46)

Garcia, Nikoli�

§ Pointers are used to point to any data type (int,
char, a struct, etc.).

§ Normally a pointer can only point to one type (int,
char, a struct, etc.).

ú void * is a type that can point to anything (generic

pointer)

ú Use sparingly to help avoid program bugs… and security

issues… and a lot of other bad things!

§ You can even have pointers to functions…
ú int (*fn) (void *, void *) = &foo

 fn is a function that accepts two void * pointers and returns an int

and is initially pointing to the function foo.

ú (*fn)(x, y) will then call the function

Pointers

Introduction to C (47)

Garcia, Nikoli�

Pointers and Structures
typedef struct {

int x;

int y;

} Point;

Point p1;

Point p2;

Point *paddr;

/* dot notation */

int h = p1.x;

p2.y = p1.y;

/* arrow notation */

int h = paddr->x;

int h = (*paddr).x;

/* This works too */

p1 = p2;

47

Introduction to C (48)

Garcia, Nikoli�

NULL pointers...
§ The pointer of all 0s is special

ú The "NULL" pointer, like in Java, python, etc...

§ If you write to or read a null pointer, your program

should crash

§ Since "0 is false", its very easy to do tests for null:
ú if(!p) { /* P is a null pointer */ }

ú if(q) { /* Q is not a null pointer */ }

Introduction to C (49)

Garcia, Nikoli�

§ Modern machines are “byte-addressable”

ú Hardware’s memory composed of 8-bit storage cells, each has a unique address

§ A C pointer is just abstracted memory address

§ Type declaration tells compiler how many bytes to fetch on each access

through pointer

ú E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

§ But we actually want “word alignment”

ú Some processors will not allow you to address 32b values without being on 4 byte boundaries

ú Others will just be very slow if you try to access “unaligned” memory.

Pointing to Different Size Objects

424344454647484950515253545556575859

int *x

32-bit integer

stored in four bytes

short *y

16-bit short stored in

two bytes

char *z

8-bit character

stored in one byte

Byte address

þ

Introduction to C (51)

Garcia, Nikoli�

§ Declaration:

ú int ar[2];

ú …declares a 2-element integer array

ú An array is really just a block of memory

§ Declaration and initialization
ú int ar[] = {795, 635};

ú declares and fills a 2-elt integer array

§ Accessing elements:

ú ar[num]

ú returns the numth element.

Arrays (1/5)

Introduction to C (52)

Garcia, Nikoli�

§ Arrays are (almost) identical to

pointers

ú char *string and char string[]

are nearly identical declarations

ú They differ in very subtle ways: incrementing,

declaration of filled arrays

§ Key Concept: An array variable is a
“pointer” to the first element.

Arrays (2/5)

Introduction to C (53)

Garcia, Nikoli�

§ Consequences:

ú ar is an array variable but looks like a pointer in many

respects (though not all)

ú ar[0] is the same as *ar

ú ar[2] is the same as *(ar+2)

ú We can use pointer arithmetic to access arrays more

conveniently.

§ Declared arrays are only allocated while the scope

is valid
char *foo() {

char string[32]; ...;

return string;

} is incorrect

Arrays (3/5)

Introduction to C (54)

Garcia, Nikoli�

§ Array size n; want to access from 0 to n-1, so you
should use counter AND utilize a variable for

declaration & incr

ú Wrong
int i, ar[10];

for(i = 0; i < 10; i++){ ... }

ú Right
int ARRAY_SIZE = 10;

int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }

§ Why? SINGLE SOURCE OF TRUTH

ú You’re utilizing indirection and avoiding maintaining

two copies of the number 10

Arrays (4/5)

Introduction to C (55)

Garcia, Nikoli�

§ Pitfall: An array in C does not know its own

length, & bounds not checked!

ú Consequence: We can accidentally access off the

end of an array.

ú Consequence: We must pass the array and its size

to a procedure which is going to traverse it.

§ Segmentation faults and bus errors:

ú These are VERY difficult to find; be careful!

ú You’ll learn how to debug these in lab…

Arrays (5/5)

Introduction to C (56)

Garcia, Nikoli�

§ pointer + n

ú Adds n*sizeof(“whatever pointer is

pointing to”) to the memory address

§ pointer – n

ú Adds n*sizeof(“whatever pointer is

pointing to”) to the memory address

Pointer Arithmetic

Introduction to C (57)

Garcia, Nikoli�

§ Java and C pass parameters “by value”

ú procedure/ function/ method gets a copy of the

parameter, so changing the copy cannot change

the original

void addOne (int x) {

x = x + 1;

}

int y = 3;

addOne(y);

y is still = 3

Pointers (1/4) …review…

Introduction to C (58)

Garcia, Nikoli�

§ How to get a function to change a value?

void addOne (int *p) {

*p = *p + 1;

}

int y = 3;

addOne(&y);

y is now = 4

Pointers (2/4) …review…

Introduction to C (59)

Garcia, Nikoli�

§ But what if you want to change a pointer?

ú What gets printed?

void IncrementPtr(int *p)

{ p = p + 1; }

int A[3] = {50, 60, 70};

int *q = A;

IncrementPtr(q);

printf(“*q = %d\n”, *q);

Pointers (3/4)

*q = 50

50 60 70

A q

Introduction to C (60)

Garcia, Nikoli�

§ Idea! Pass a pointer to a pointer!

ú Declared as **h

ú Now what gets printed?

void IncrementPtr(int **h)

{ *h = *h + 1; }

int A[3] = {50, 60, 70};

int *q = A;

IncrementPtr(&q);

printf(“*q = %d\n”, *q);

Pointers (4/4)

*q = 60

50 60 70

A q q

þ

Introduction to C (62)

Garcia, Nikoli�

#include <stdio.h>

int x10(int), x2(int);
void mutate_map(int [], int n, int(*)(int));
void print_array(int [], int n);

int x2 (int n) { return 2*n; }
int x10(int n) { return 10*n; }

void mutate_map(int A[], int n, int(*fp)(int)) {
for (int i = 0; i < n; i++)

A[i] = (*fp)(A[i]);
}

void print_array(int A[], int n) {
for (int i = 0; i < n; i++)

printf("%d ",A[i]);
printf("\n");

}

int main(void)
{

int A[] = {3,1,4}, n = 3;
print_array(A, n);
mutate_map (A, n, &x2);
print_array(A, n);
mutate_map (A, n, &x10);
print_array(A, n);

}

map (actually mutate_map easier)

% ./map
3 1 4
6 2 8
60 20 80

Introduction to C (64)

Garcia, Nikoli�

§ C has operator sizeof() which gives size in bytes (of

type or variable)

§ Assume size of objects can be misleading and is bad
style, so use sizeof(type)

ú Many years ago an int was 16 bits, and programs were written with

this assumption.

ú What is the size of integers now?

§ “sizeof” knows the size of arrays:

int ar[3]; // Or: int ar[] = {54, 47, 99}

sizeof(ar) à 12

ú …as well for arrays whose size is determined at run-time:

int n = 3;

int ar[n]; // Or: int ar[fun_that_returns_3()];

sizeof(ar) à 12

Dynamic Memory Allocation (1/4)

Introduction to C (65)

Garcia, Nikoli�

§ To allocate room for something new to point to, use
malloc() (with the help of a typecast and
sizeof):

ptr = (int *) malloc (sizeof(int));

ú Now, ptr points to a space somewhere in memory of

size (sizeof(int)) in bytes.

ú (int *) simply tells the compiler what will go into that

space (called a typecast).

§ malloc is almost never used for 1 var

§ ptr = (int *) malloc (n*sizeof(int));

ú This allocates an array of n integers.

Dynamic Memory Allocation (2/4)

Introduction to C (66)

Garcia, Nikoli�

§ Once malloc() is called, the memory

location contains garbage, so don’t use it

until you’ve set its value.

§ After dynamically allocating space, we

must dynamically free it:

ú free(ptr);

§ Use this command to clean up.

ú Even though the program frees all memory on exit

(or when main returns), don’t be lazy!

ú You never know when your main will get

transformed into a subroutine!

Dynamic Memory Allocation (3/4)

Introduction to C (67)

Garcia, Nikoli�

§ The following two things will cause your program to
crash or behave strangely later on, and cause VERY

VERY hard to figure out bugs:

ú free()ing the same piece of memory twice

ú calling free() on something you didn’t get back from

malloc()

§ The runtime does not check for these mistakes

ú Memory allocation is so performance-critical that there

just isn’t time to do this

ú The usual result is that you corrupt the memory allocator’s

internal structure

ú You won’t find out until much later on, in a totally

unrelated part of your code!

Dynamic Memory Allocation (4/4)

Introduction to C (68)

Garcia, Nikoli�

Managing the Heap: realloc(p, size)
§ Resize a previously allocated block at p to a new size

§ If p is NULL, then realloc behaves like malloc

§ If size is 0, then realloc behaves like free, deallocating the

block from the heap

§ Returns new address of the memory block; NOTE: it is likely to have
moved!

int *ip;

ip = (int *) malloc(10*sizeof(int));

/* always check for ip == NULL */

… … …

ip = (int *) realloc(ip,20*sizeof(int));

/* always check NULL, contents of first 10

elements retained */

… … …

realloc(ip,0); /* identical to free(ip) */

Introduction to C (69)

Garcia, Nikoli�

Arrays not implemented as you’d think

void foo() {

int *p, *q, x;

int a[4];

p = (int *)

malloc (sizeof(int));

q = &x;

? ?

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ...

p q x

? ? ?

unnamed-malloc-space

40 20 2 3 1

*p:1, p:40, &p:12

*q:2, q:20, &q:16

*a:3, a:24, &a:24

K&R: “An array name is not a variable”

a

24

?

*p = 1; // p[0] would also work here

printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);

*q = 2; // q[0] would also work here

printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);

*a = 3; // a[0] would also work here

printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

Introduction to C (70)

Garcia, Nikoli�

§ Pointers and arrays are virtually same

§ C knows how to increment pointers

§ C is an efficient language, with little protection

ú Array bounds not checked

ú Variables not automatically initialized

§ Use handles to change pointers

§ Dynamically allocated heap memory must be manually
deallocated in C.

ú Use malloc() and free() to allocate and deallocate

memory from heap.

§ (Beware) The cost of efficiency is more overhead for the
programmer.

ú “C gives you a lot of extra rope, don’t hang yourself with it!”

Mini-summary

þ

Introduction to C (72)

Garcia, Nikoli�

§ Let’s look at an example of using structures,
pointers, malloc(), and free() to implement a

linked list of strings.

struct Node {

char *value;

struct Node *next;

};

typedef struct Node *List;

/* Create a new (empty) list */

List ListNew(void)

{ return NULL; }

Linked List Example

Introduction to C (73)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
list

:

string:

“abc”

… …

NULL
?

Linked List Example

Introduction to C (74)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
list

:

string:

“abc”

… …

NULL?

?

Linked List Example

Introduction to C (75)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
list

:

string:

“abc”

… …

NULL

?

“????”

Linked List Example

Introduction to C (76)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
list

:

string:

“abc”

… …

NULL

?

“abc”

Linked List Example

Introduction to C (77)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
list

:

string:

“abc”

… …

NULL

“abc”

Linked List Example

Introduction to C (78)

Garcia, Nikoli�

/* add a string to an existing list */

List list_add(List list, char *string)

{
struct Node *node =

(struct Node*) malloc(sizeof(struct Node));

node->value =

(char*) malloc(strlen(string) + 1);
strcpy(node->value, string);

node->next = list;

return node;

}

node:
… …

NULL

“abc”

Linked List Example

þ

Introduction to C (80)

Garcia, Nikoli�

Don’t forget the globals!
§ What is stored?

ú Structure declaration does not allocate memory

ú Variable declaration does allocate memory

§ So far we have talked about several different ways to allocate
memory for data:

ú Declaration of a local variable

int i; struct Node list; char *string; int ar[n];

ú “Dynamic” allocation at runtime by calling allocation function (alloc).

ptr = (struct Node *) malloc (sizeof(struct Node)*n);

§ One more possibility exists…

ú Data declared outside of any procedure

(i.e., before main).

ú Similar to #1 above, but has “global” scope.

int myGlobal;

main() {

}

Introduction to C (81)

Garcia, Nikoli�

C Memory Management
§ C has 3 pools of memory

ú Static storage: global variable storage, basically

permanent, entire program run

ú The Stack: local variable storage, parameters, return

address (location of “activation records” in Java or “stack

frame” in C)

ú The Heap (dynamic malloc storage): data lives until

deallocated by programmer

§ C requires knowing where objects are in memory,
otherwise things don’t work as expected

ú Java hides location of objects

Introduction to C (82)

Garcia, Nikoli�

Normal C Memory Management
§ A program’s address space

contains 4 regions:

ú stack: local variables, grows

downward

ú heap: space requested for pointers

via malloc() ; resizes

dynamically, grows upward

ú static data: variables declared

outside main, does not grow or

shrink

ú code: loaded when program starts,

does not change

code

static data

heap

stack

For now, OS somehow

prevents accesses between
stack and heap (gray hash

lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

Introduction to C (83)

Garcia, Nikoli�

Where are variables allocated?

§ If declared outside a procedure

(global), allocated in “static” storage

§ If declared inside procedure (local),
allocated on the “stack”

and freed when procedure returns.

ú NB: main() is a procedure

int myGlobal;

main() {

int myTemp;

}

Introduction to C (84)

Garcia, Nikoli�

The Stack
§ Stack frame includes:

ú Return “instruction” address

ú Parameters

ú Space for other local variables

§ Stack frames contiguous
blocks of memory; stack pointer

tells where top stack frame is

§ When procedure ends, stack
frame is tossed off the stack; frees
memory for future stack frames

frame

frame

frame

frameSP

Introduction to C (85)

Garcia, Nikoli�

Stack

§ Last In, First Out (LIFO) data structure

main ()

{ a(0);

}
void a (int m)

{ b(1);

}
void b (int n)

{ c(2);

}
void c (int o)

{ d(3);

}
void d (int p)

{

}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack

grows

down

þ

Introduction to C (87)

Garcia, Nikoli�

The Heap (Dynamic memory)
§ Large pool of memory,

not allocated in contiguous order

ú back-to-back requests for heap memory could result

blocks very far apart

ú where Java new command allocates memory

§ In C, specify number of bytes of memory explicitly to

allocate item

int *ptr;

ptr = (int *) malloc(sizeof(int));

/* malloc returns type (void *),

so need to cast to right type */

ú malloc(): Allocates raw, uninitialized memory from

heap

Introduction to C (88)

Garcia, Nikoli�

Memory Management

§ How do we manage memory?

§ Code, Static storage are easy:

ú they never grow or shrink

§ Stack space is also easy:

ú stack frames are created and destroyed in last-in,

first-out (LIFO) order

§ Managing the heap is tricky:

ú memory can be allocated / deallocated at any

time

Introduction to C (89)

Garcia, Nikoli�

Heap Management Requirements

§ Want malloc() and free() to run

quickly

§ Want minimal memory overhead

§ Want to avoid fragmentation* –

when most of our free memory is in many

small chunks

ú In this case, we might have many free bytes but not

be able to satisfy a large request since the free

bytes are not contiguous in memory.

* This is technically called external fragmention

Introduction to C (90)

Garcia, Nikoli�

Heap Management

§ An example

ú Request R1 for 100 bytes

ú Request R2 for 1 byte

ú Memory from R1 is freed

ú Request R3 for 50 bytes
R2 (1 byte)

R1 (100 bytes)

Introduction to C (91)

Garcia, Nikoli�

Heap Management

§ An example

ú Request R1 for 100 bytes

ú Request R2 for 1 byte

ú Memory from R1 is freed

ú Request R3 for 50 bytes
R2 (1 byte)

R3?

R3?

Introduction to C (92)

Garcia, Nikoli�

K&R Malloc/Free Implementation
§ From Section 8.7 of K&R

ú Code in the book uses some C language features we

haven’t discussed and is written in a very terse style, don’t

worry if you can’t decipher the code

§ Each block of memory is preceded by a header that

has two fields:
size of the block and
a pointer to the next block

§ All free blocks are kept in a circular linked list, the
pointer field is unused in an allocated block

Introduction to C (93)

Garcia, Nikoli�

K&R Implementation

§ malloc() searches the free list for a block

that is big enough. If none is found, more

memory is requested from the operating

system. If what it gets can’t satisfy the

request, it fails.

§ free() checks if the blocks adjacent to

the freed block are also free

ú If so, adjacent free blocks are merged (coalesced)

into a single, larger free block

ú Otherwise, freed block is just added to the free list

Introduction to C (94)

Garcia, Nikoli�

Choosing a block in malloc()

§ If there are multiple free blocks of memory

that are big enough for some request, how

do we choose which one to use?

ú best-fit: choose the smallest block that is big

enough for the request

ú first-fit: choose the first block we see that is big

enough

ú next-fit: like first-fit but remember where we

finished searching and resume searching from

there

Introduction to C (95)

Garcia, Nikoli�

And in conclusion…
§ C has 3 pools of memory

ú Static storage: global variable storage, basically

permanent, entire program run

ú The Stack: local variable storage, parameters, return

address

ú The Heap (dynamic storage): malloc() grabs space from

here, free() returns it.

§ malloc() handles free space with freelist

§ Three ways to find free space when given a request:

ú First fit (find first one that’s free)

ú Next fit (same as first, but remembers where left off)

ú Best fit (finds most “snug” free space) þ

Introduction to C (97)

Garcia, Nikoli�

§ Why use pointers?

ú If we want to pass a huge struct or array, it’s easier

/ faster / etc to pass a pointer than the whole thing.

ú In general, pointers allow cleaner, more compact

code.

§ So what are the drawbacks?

ú Pointers are probably the single largest source of

bugs in software, so be careful anytime you deal

with them.

ú Dangling reference (use ptr before malloc)

ú Memory leaks (tardy free, lose the ptr)

Pointers in C

Introduction to C (98)

Garcia, Nikoli�

Writing off the end of arrays...
int *foo = (int *) malloc(sizeof(int) * 100);

int i;

....

for(i = 0; i <= 100; ++i) {

foo[i] = 0;

}

§ Corrupts other parts of the program...

ú Including internal C data

§ May cause crashes later

Introduction to C (99)

Garcia, Nikoli�

Returning Pointers into the Stack
§ Pointers in C allow access to deallocated memory,

leading to hard-to-find bugs !
int *ptr () {

int y;

y = 3;

return &y;

};

main () {

int *stackAddr, content;

stackAddr = ptr();

content = *stackAddr;

printf("%d", content); /* 3 */

content = *stackAddr;

printf("%d", content); /*13451514 */

};

main

ptr()

(y==3)
SP

main
SP

main

printf()

(y==?)
SP

Introduction to C (100)

Garcia, Nikoli�

Use After Free
§ When you keep using a pointer..

struct foo *f

....

f = malloc(sizeof(struct foo));

....

free(f)

....

bar(f->a);

§ Reads after the free may be corrupted

ú As something else takes over that memory. Your

program will probably get wrong info!

§ Writes corrupt other data!

ú Uh oh... Your program crashes later!

Introduction to C (101)

Garcia, Nikoli�

Forgetting realloc Can Move Data...
§ When you realloc it can copy data...

ú struct foo *f = malloc(sizeof(struct foo) * 10);

...

struct foo *g = f;

....

f = realloc(sizeof(struct foo) * 20);

§ Result is g may now point to invalid memory

ú So reads may be corrupted and writes may corrupt other pieces of

memory

Introduction to C (102)

Garcia, Nikoli�

Freeing the Wrong Stuff...
§ If you free() something never malloc'ed()

ú Including things like

struct foo *f = malloc(sizeof(struct foo) * 10)

...

f++;

...

free(f)

§ malloc or free may get confused..

ú Corrupt its internal storage or erase other data...

Introduction to C (103)

Garcia, Nikoli�

Double-Free...
§ E.g.,

struct foo *f = (struct foo *)

malloc(sizeof(struct foo) * 10);

...

free(f);

...

free(f);

§ May cause either a use after free (because

something else called malloc() and got that data)
or corrupt malloc’s data (because you are no
longer freeing a pointer called by malloc)

Introduction to C (104)

Garcia, Nikoli�

Losing the initial pointer! (Memory Leak)

§ What is wrong with this code?

int *plk = NULL;

void genPLK() {

plk = malloc(2 * sizeof(int));

… … …

plk++;

}

This MAY be a memory leak
if we don't keep somewhere else

a copy of the original malloc'ed
pointer

Introduction to C (105)

Garcia, Nikoli�

Valgrind to the rescue…
§ Valgrind slows down your program by an order of

magnitude, but...

ú It adds a tons of checks designed to catch most (but not

all) memory errors

 Memory leaks

 Misuse of free

 Writing over the end of arrays

§ Tools like Valgrind are absolutely essential for

debugging C code

Introduction to C (106)

Garcia, Nikoli�

And In Conclusion, …

§ C has three main memory segments in

which to allocate data:

ú Static Data: Variables outside functions

ú Stack: Variables local to function

ú Heap: Objects explicitly malloc-ed/ free-d.

§ Heap data is biggest source of bugs in

C code

þ

