

UC Berkeley Teaching Professor Dan Garcia

Great Ideas in Computer Architecture (a.k.a. Machine Structures)

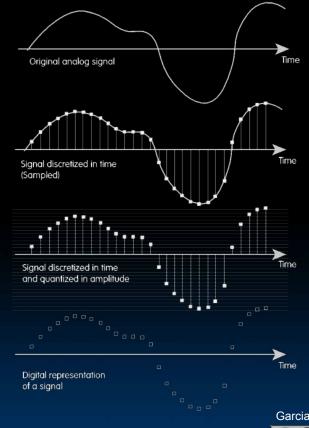
UC Berkeley Professor Bora Nikolić

Number Representation

cs61c.org

Data input: Analog \rightarrow Digital

- Real world is analog!
- To import analog information, we must do two things
 - □ Sample
 - E.g., for a CD, every 44,100ths of a second, we ask a music signal how loud it is.
 - Quantize
 - For every one of these samples, we figure out where, on a 16-bit (65,536 tic-mark) "yardstick", it lies.



Number Representation (2)

Digital data not necessarily born Analog...

- Characters?
 - □ 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - □ upper/lower case + punctuation
 ⇒ 7 bits (in 8) ("ASCII")
 - □ standard code to cover all the world's languages ⇒ 8,16,32 bits ("Unicode" www.unicode.com
- Logical values?
 - $\Box \quad 0 \rightarrow False, \ 1 \rightarrow True$
- colors ? Ex: *Red (00) Green (01) Blue (11)*
- Iocations / addresses? commands?
- MEMORIZE: N bits ⇔ at most 2^N things

Binary Decimal Hex

Base 10 (Ten) #s, Decimals

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example: $3271 = 3271_{10} =$ $(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Number Representation (6)

Base 2 (Two) #s, Binary (to Decimal)

Digits: 0, 1 (<u>bi</u>nary digi<u>ts</u> □ bits)

Example: "1101" in binary? ("0b1101") $1101_2 = (1x2^3) + (1x2^2) + (0x2^1) + (1x2^0)$ = 8 + 4 + 0 + 1= 13

Number Representation (7)

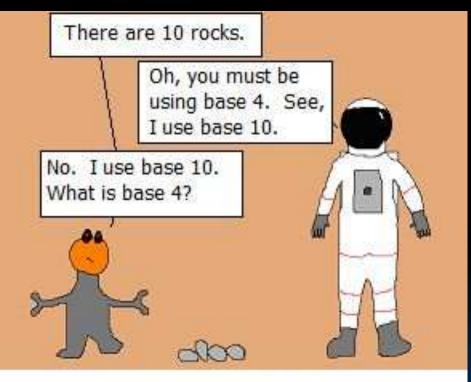
Base 16 (Sixteen) #s, Hexadecimal (to Decimal)

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 10,11,12,13,14,15

Example: "A5" in Hexadecimal? $0xA5 = A5_{16} = (10x16^{1}) + (5x16^{0})$ = 160 + 5= 165

Number Representation (8)

Every Base is Base 10...



Every base is base 10.

Number Representation (9)

Convert from Decimal to Binary

- E.g., 13 to binary?
- Start with the columns

Left to right, is (column) ≤ number n?
 □ If yes, put how many of that column fit in n,

subtract col * that many from n, keep going.
If not, put 0 and keep going. (and Stop at 0)

Convert from Decimal to Hexadecimal

- E.g., 165 to hexadecimal?
- Start with the columns

Left to right, is (column) ≤ number n?
 If yes, put how many of that column fit in n, subtract col * that many from n, keep going.
 If not, put 0 and keep going. (and Stop at 0)

Binary Hex? Easy!	D 00	<u>Н</u> О	<u>B</u> 0000
Always left-pad with 0s to make	01	1	0001
	02	2	001(
full 4-bit values, then look up!	03	3	0011
	04	4	0100
E.g., 0b11110 to Hex?	05		
■ 0b11110 □ 0b00011110	06	6	
	07	7	0111
Then look up: 0x1E	08	8	1000
•	09	9	1001
Hex Binary? Easy!	10	A	101(
	11	B	1011
Just look up, drop leading 0s		С	1100
	13	D	1101
■ 0x1E□0b00011110□0b11110	14	E	111(
	15	ы	1111

ЦÚ

Garcia, Nikolić

BY

cc

(s)(o)

NC SA

Decimal vs Hexadecimal vs Binary

D H	B
	0000
01 1	0001
	0010
03 3	0011
04 4	0100
05 5	0101
06 6	0110
07 7	0111
08 8	1000
099	1001
10 A	1010
11 B	1011
12 C	1100
13 D	1101
14 E	1110
15 F	1111
	Garcia, Niko
	02 2 03 3 04 4 05 5 06 6 07 7 08 8 09 9 10 A 11 B 12 C 13 D 14 E

BY

NC SA

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and see 4 bits/symbol
 - □ Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +, -, *, /
 - I To a computer, numbers always binary
 - Regardless of how number is written:
 - $\square 32_{ten} = 32_{10} = 0x20 = 100000_2 = 0b100000$
 - Use subscripts "ten", "hex", "two" in book, slides when might be confusing

Number Representation (14)

The computer knows it, too...

#include <stdio.h>

```
int main() {
    const int N = 1234;
    printf("Decimal: %d\n", N);
    printf("Hex: %x\n", N);
    printf("Octal: %o\n", N);

    printf("Cotal: %o\n", N);

    printf("Literals (not supported by all compilers):\n");
    printf("0x4d2 = %d (hex)\n", 0x4d2);
    printf("0b10011010010 = %d (binary)\n", 0b10011010010);
    printf("02322 = %d (octal, prefix 0 - zero)\n", 02322);
}
```

```
Output Decimal: 1234
Hex: 4d2
Octal: 2322
Literals (not supported by all compilers):
0x4d2 = 1234 (hex)
0b10011010010 = 1234 (binary)
02322 = 1234 (octal, prefix 0 - zero)
```


Number Representation (15)

Number Representatio

ns

What to do with representations of

numbers?

- What to do with number representations?
 Add them
 - □ Subtract them
 - I Multiply themDivide them
 - □ Compare them

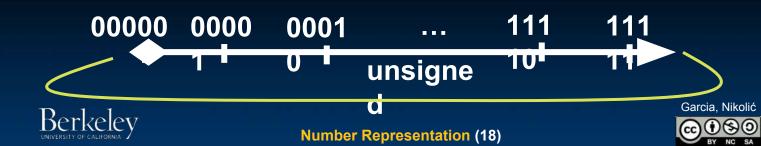
- Example: 10 + 7 = 17
 - ...so simple to add in binary that we can build circuits to do it!
 Subtraction instance was shown as a second second
 - Subtraction just as you would in decimal
 Comparison: How do you tell if X > Y ?

What if too big?

 Binary bit patterns are simply <u>representatives</u> of numbers. Abstraction!

□ Strictly speaking they are called "<u>numerals</u>".

- Numerals really have an ∞ number of digits
 - with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
 - Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, we say <u>overflow</u> occurred



How to Represent Negative Numbers?

(C's unsigned int, C18's uintN_t)

So far, <u>un</u>signed numbers

Number Representation (19)

Shortcomings of Sign and Magnitude?

- Arithmetic circuit complicated
 - Special steps depending on if signs are the same or not
- Also, <u>two</u> zeros
 - $\Box \quad 0 \times 00000000 = +0_{ten}$
 - \Box 0x8000000 = -0_{ten}
 - What would two 0s mean for programming?
- Also, incrementing "binary odometer", sometimes increases values, and sometimes decreases!
- Therefore sign and magnitude used only in signal processors

CS 61C

Another try: complement the bits

- Example: $7_{10} = 00111_2 7_{10} = 11000_2$
- Called <u>One's Complement</u>
- Note: positive numbers have leading 0s, negative numbers have leadings 1s.

- What is -00000 ? Answer: 11111
- How many positive numbers in N bits?
- How many negative numbers?
 Berkeley
 Number Representation (21)

Shortcomings of One's Complement?

- Arithmetic still somewhat complicated
- Still two zeros
 - $\Box \quad 0 \times 00000000 = +0_{ten}$ $\Box \quad 0 \times FFFFFFF = -0_{ten}$
- Although used for a while on some computer products, one's complement was eventually abandoned because another solution was better.

Garcia. Nikolić

Two's Complement & Bias Encoding

Standard Negative # Representation

- Problem is the negative mappings "overlap" with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 - Solution! For negative numbers, complement, then add 1 to the result
- As with sign and magnitude, & one's compl.
 leading 0s
 positive, leading 1s
 negative
 - □ 000000...xxx is \geq 0, 111111...xxx is < 0
 - \square except 1...1111 is -1, not -0 (as in sign & mag.)
- This representation is Two's Complement
 - □ This makes the hardware simple!

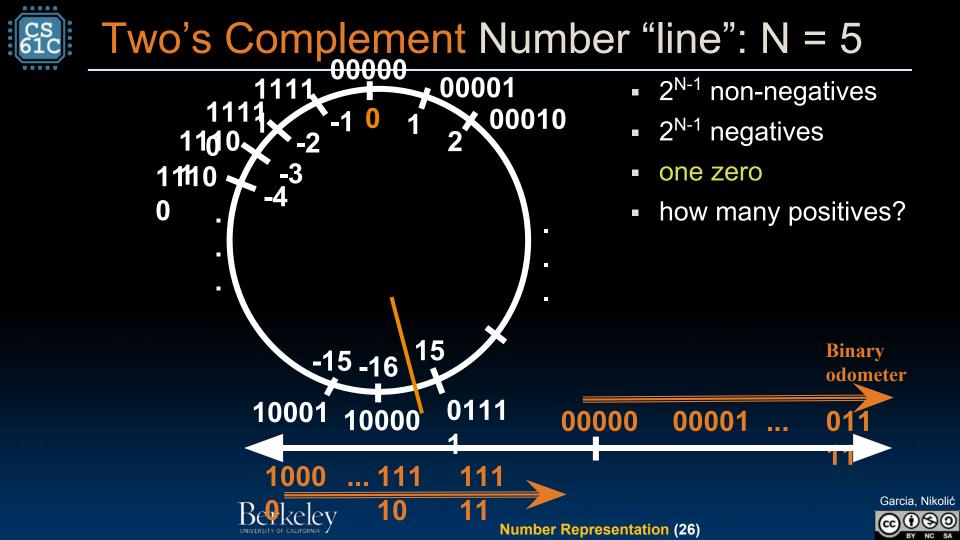
(C's int, C18's int*N*_t, aka a "signed Berkinteger") Number Representation (24)

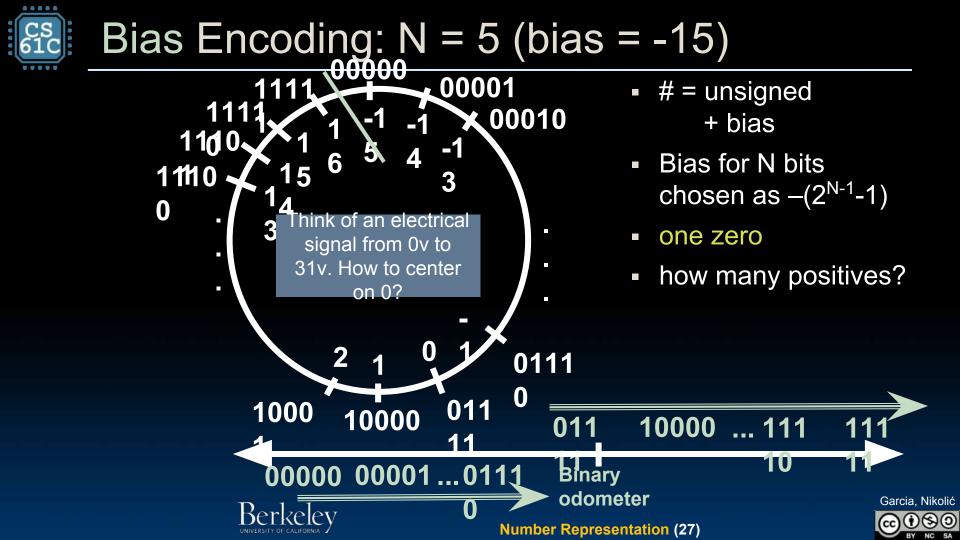
Two's Complement Formula

Can represent positive <u>and negative</u> numbers in terms of the bit value times a power of 2: $d_{31} \left(-(2^{31}) + d_{30} \times 2^{30} + ... + d_{2} \times 2^{2} + d_{1} \times 2^{1} + d_{0} \times 2^{0} \right)$ Example: 1101_{two} in a nibble? $= 1x-(2^3) + 1x2^2 + 0x2^1 + 1x2^2$ Example: -3 to +3 to -3 (again, in a nibble): $= -2^3 + 2^2 + 0 + 2^0$ = -8 + 4 + 0 + 1x : 1101 x' : 0010^{two} +1 : 0011^{two} ()': 1100^{two} +1 : 1101^{two} = -8 + 5= -3_{ten} two

Number Representation (25)

Garcia, Nikolić





And in summary...

- We represent "things" in computers as particular bit patterns: N bits $\Rightarrow 2^{N}$ things
- These 5 integer encodings have different benefits; 1s complement and sign/mag have most problems.

