
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Floating Point

Floating Point (3)

Garcia, Nikoli�

<95% of the folks out

there are completely

clueless about floating-

point.=

3 James Gosling, 1998-02-28

ú Sun Fellow

ú Java Inventor

Quote of the day

Floating Point (4)

Garcia, Nikoli�

Review of Numbers

§ Computers made to process numbers

§ What can we represent in N bits?

ú 2N things, and no more! They could be&

ú Unsigned integers:

 0 to 2N - 1

 (for N=32, 2N - 1 = 4,294,967,295)

ú Signed Integers (Two9s Complement)

 -2(N-1) to 2(N-1) - 1

 (for N=32, 2(N-1) - 1 = 2,147,483,647)

Floating Point (5)

Garcia, Nikoli�

What about other numbers?

§ Very large numbers (sec/millennium)

ú 31,556,926,00010 (3.155692610 x 1010)

§ Very small numbers? (Bohr radius)

ú 0.000000000052917710m (5.2917710 x 10-11)

§ #s with both integer & fractional parts?

ú 1.5

§ First consider #3.

ú &our solution will also help with 1 and 2.

Floating Point (6)

Garcia, Nikoli�

Representation of Fractions

§ <Binary Point= like decimal point signifies

boundary betw. integer and fractional parts:

§ Example 6-bit representation

§ 10.1010
2

= 1x21 + 1x2-1 + 1x2-3 = 2.625
10

§ If we assume <fixed binary point=, range of 6-bit

representations with this format:

ú 0 to 3.9375 (almost 4)

xx.yyyy

21

20 2-1
2-2 2-3 2-4

Floating Point (7)

Garcia, Nikoli�

Fractional Powers of 2

0 1.0 1

1 0.5 1/2

2 0.25 1/4

3 0.125 1/8

4 0.0625 1/16

5 0.03125 1/32

6 0.015625

7 0.0078125

8 0.00390625

9 0.001953125

10 0.0009765625

11 0.00048828125

12 0.000244140625

13 0.0001220703125

14 0.00006103515625

15 0.000030517578125

i 2-i
Mark Lu9s <Binary Float Displayer=

Floating Point (8)

Garcia, Nikoli�

§ What about addition and multiplication?

ú Addition is straightforward

ú Multiplication a bit

more complex:

ú Where9s the answer, 0.11?

 Need to remember where point is&

Representation of Fractions with Fixed Pt.

01.100 1.510

+ 00.100 0.510

10.000 2.010
01.100 1.510

00.100 0.510

00 000

000 00

0110 0

00000

00000

0000110000

þ

Floating Point (10)

Garcia, Nikoli�

§ So far, in our examples we used a <fixed= binary point what we

really want is to <float= the binary point. Why?

ú Floating binary point most effective use of our limited bits (and thus

more accuracy in our number representation):

ú E.g., put 0.1640625 into binary. Represent as in 5-bits choosing where

to put the binary point.

ú & 000000.001010100000&

ú Store these bits and keep track of the binary point 2 places to the left

of the MSB.

ú Any other solution would lose accuracy!

§ With floating point representation, each numeral carries an

exponent field recording the whereabouts of its binary point.

§ The binary point can be outside the stored bits, so very large and

small numbers can be represented.

Representation of Fractions

Floating Point (11)

Garcia, Nikoli�

Scientific Notation (in Decimal)

§ Normalized form: no leadings 0s

(exactly one digit to left of decimal point)

§ Alternatives to representing 1/1,000,000,000

ú Normalized: 1.0 x 10-9

ú Not normalized: 0.1 x 10-8, 10.0 x 10-10

6.02
ten

x 1023

radix (base)decimal point

mantissa exponent

Floating Point (12)

Garcia, Nikoli�

Scientific Notation (in Binary)

§ Computer arithmetic that supports it

called floating point, because it represents

numbers where the binary point is not

fixed, as it is for integers

ú Declare such variable in C as float

1.01
two

x 2-1

radix (base)<binary point=

exponentmantissa

Floating Point (13)

Garcia, Nikoli�

Floating Point Representation (1/2)

§ Normal format: +1.xxx&xtwo*2yyy&ytwo

§ Multiple of Word Size (32 bits)

§ S represents Sign

§ Exponent represents y9s

§ Significand represents x9s

§ Represent numbers as small as

1.2 x 10-38 to as large as 3.4 x 1038

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

Floating Point (14)

Garcia, Nikoli�

Floating Point Representation (2/2)

§ What if result too large?

ú (> 3.4x1038 , < -3.4x1038)

ú Overflow! à Exponent larger than represented in 8-bit

Exponent field

§ What if result too small?

ú (>0 and < 1.2x10-38 , <0 and > -1.2x10-38)

ú Underflow!à Negative exponent larger than represented in

8-bit Exponent field

§ What would help reduce chances of overflow and/or

underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

Underflow overflowoverflow

Floating Point (15)

Garcia, Nikoli�

IEEE 754 Floating Point Standard (1/3)

§ Single Precision (DP similar):

§ Sign bit: 1 means negative, 0 means positive

§ Significand:

ú To pack more bits, leading 1 implicit for normalized numbers

ú 1 + 23 bits single, 1 + 52 bits double

ú always true: 0 < Significand < 1 (for normalized numbers)

§ Note: 0 has no leading 1, so reserve exponent value 0

just for number 0

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

Floating Point (16)

Garcia, Nikoli�

IEEE 754 Floating Point Standard (2/3)

§ IEEE 754 uses <biased exponent= representation.

ú Designers wanted FP numbers to be used even if no FP

hardware; e.g., sort records with FP numbers using integer

compares

ú Wanted bigger (integer) exponent field to represent bigger

numbers.

ú 29s complement poses a problem (because negative numbers

look bigger)

ú We9re going to see that the numbers are ordered EXACTLY as

in sign-magnitude

 I.e., counting from binary odometer 00&00 up to 11&11 goes from 0

to +MAX to -0 to -MAX to 0

Floating Point (17)

Garcia, Nikoli�

§ Called Biased Notation, where bias is number subtracted

to get real number

ú IEEE 754 uses bias of 127 for single prec.

ú Subtract 127 from Exponent field to get exponent value

§ Summary (single precision, or fp32):

§ (-1)S x (1 + Significand) x 2(Exponent-127)

§ Double precision identical, except exponent bias of

1023 (half, quad similar)&

IEEE 754 Floating Point Standard (3/3)

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

Floating Point (18)

Garcia, Nikoli�

§ IEEE Standard 754 for

Binary Floating-Point

Arithmetic.

<Father= of the Floating point standard

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. Kahan

1989
ACM Turing

Award Winner!

þ

Floating Point (20)

Garcia, Nikoli�

Representation for ±>

§ In FP, divide by 0 should produce ±>, not

overflow.

§ Why?

ú OK to do further computations with >

ú E.g., X/0 > Y may be a valid comparison

ú Ask math majors

§ IEEE 754 represents ±>

ú Most positive exponent reserved for >

ú Significands all zeroes

Floating Point (21)

Garcia, Nikoli�

Representation for 0

§ Represent 0?

ú exponent all zeroes

ú significand all zeroes

ú What about sign? Both cases valid.

+0: 0 00000000 00000000000000000000000

-0: 1 00000000 00000000000000000000000

Floating Point (22)

Garcia, Nikoli�

Special Numbers

§ What have we defined so far? (Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- >

255 nonzero ???

§ Professor Kahan had clever ideas;

<Waste not, want not=

ú Wanted to use Exp=0,255 & Sig!=0

Floating Point (23)

Garcia, Nikoli�

Representation for Not a Number

§ What do I get if I calculate sqrt(-

4.0) or 0/0?

ú If > not an error, these shouldn9t be either

ú Called Not a Number (NaN)

ú Exponent = 255, Significand nonzero

§ Why is this useful?

ú Hope NaNs help with debugging?

ú They contaminate: op(NaN, X) = NaN

ú Can use the significand to identify which!

Floating Point (24)

Garcia, Nikoli�

Representation for Denorms (1/2)

§ Problem: There9s a gap among representable FP

numbers around 0

ú Smallest representable pos num:

 a = 1.0& 2 * 2-126 = 2-126

ú Second smallest representable pos num:

 b = 1.000&&1 2 * 2-126

= (1 + 0.00&12) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

ú a - 0 = 2-126

ú b - a = 2-149

b

a0
+-

Gaps!

Normalization and

implicit 1 is to blame!

Floating Point (25)

Garcia, Nikoli�

§ Solution:

ú We still haven9t used Exponent = 0, Significand

nonzero

ú DEnormalized number: no (implied) leading 1, implicit

exponent = -126.

ú Smallest representable pos num:

 a = 2-149

ú Second smallest representable pos num:

 b = 2-148

Representation for Denorms (2/2)

0
+-

Floating Point (26)

Garcia, Nikoli�

Special Numbers Summary

§ Reserve exponents, significands:

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 anything +/- fl. pt. #

255 0 +/- >

255 nonzero NaN

þ

Floating Point (28)

Garcia, Nikoli�

§ What is the decimal equivalent of:

Example

1 1000 0001 111 0000 0000 0000 0000 0000
S Exponent Significand

(-1)S x (1 + Significand) x 2(Exponent-127)

(-1)1 x (1 + .111)2 x 2(129-127)

-1 x (1.111)2 x 2(2)

-111.12

-7.510

Floating Point (29)

Garcia, Nikoli�

§1/3

= 0.33333&10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + &

= 1/4 + 1/16 + 1/64 + 1/256 + &

= 2-2 + 2-4 + 2-6 + 2-8 + &

= 0.0101010101& 2 * 20

= 1.0101010101& 2 * 2-2

ú Sign: 0

ú Exponent = -2 + 127 = 125 = 01111101

ú Significand = 0101010101&

Example: Representing 1/3

0 0111 11010101 0101 0101 0101 0101 010

Floating Point (30)

Garcia, Nikoli�

§ Method 1 (Fractions):

ú In decimal: 0.34010 Þ 34010/100010

Þ 34
10

/100
10

ú In binary: 0.1102 Þ 1102/10002 = 610/810

Þ 11
2
/100

2
= 3

10
/4

10

ú Advantage: less purely numerical, more

thought oriented; this method usually helps

people understand the meaning of the

significand better

Understanding the Significand (1/2)

Floating Point (31)

Garcia, Nikoli�

§ Method 2 (Place Values):

ú Convert from scientific notation

ú In decimal:

1.6732 = (1x100) + (6x10-1) + (7x10-2) + (3x10-3) + (2x10-4)

ú In binary:

1.1001 = (1x20) + (1x2-1) + (0x2-2) + (0x2-3) + (1x2-4)

ú Interpretation of value in each position extends

beyond the decimal/binary point

ú Advantage: good for quickly calculating significand

value; use this method for translating FP numbers

Understanding the Significand (2/2)

þ

Floating Point (33)

Garcia, Nikoli�

§ FP add associative?

ú x = 3 1.5 x 1038, y = 1.5 x 1038, and z = 1.0

ú x + (y + z) = 31.5x1038 + (1.5x1038 + 1.0)

= 31.5x1038 + (1.5x1038) = 0.0

ú (x + y) + z = (31.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

§ Therefore, Floating Point add is not associative!

ú Why? FP result approximates real result!

ú This example: 1.5 x 1038 is so much larger than 1.0

that 1.5 x 1038 + 1.0 in floating point representation is

still 1.5 x 1038

Floating Point Fallacy

Floating Point (34)

Garcia, Nikoli�

§ Precision is a count of the number bits in used to

represent a value.

§ Accuracy is the difference between the actual value of

a # and its computer representation.

§ High precision permits high accuracy but doesn9t

guarantee it.

ú It is possible to have high precision but low accuracy.

§ Example: float pi = 3.14;

ú pi will be represented using all 24 bits of the significant

(highly precise), but is only an approximation (not accurate).

Precision and Accuracy Don9t confuse these two terms!

Floating Point (35)

Garcia, Nikoli�

§ When we perform math on real numbers, we

have to worry about rounding to fit the result

in the significant field.

§ The FP hardware carries two extra bits of

precision, and then round to get the proper

value

§ Rounding also occurs when converting:

double to a single precision value, or

floating point number to an integer

Rounding

Floating Point (36)

Garcia, Nikoli�

§ Round towards + >

ú ALWAYS round <up=: 2.001 ® 3, -2.001 ® -2

§ Round towards - >

ú ALWAYS round <down=: 1.999 ® 1, -1.999 ® -2

§ Truncate

ú Just drop the last bits (round towards 0)

§ Unbiased (default mode). Midway? Round to even

ú Normal rounding, almost: 2.4 ® 2, 2.6 ® 3, 2.5 ® 2, 3.5 ® 4

ú Round like you learned in grade school (nearest int)

ú Except if the value is right on the borderline, in which case we round to

the nearest EVEN number

ú Ensures fairness on calculation

ú This way, half the time we round up on tie, the other half time we round

down. Tends to balance out inaccuracies

IEEE FP Rounding Modes

Examples in

decimal

(but, of

course,

IEEE754 in

binary)

Floating Point (37)

Garcia, Nikoli�

Now you know why you see these errors&

Saturday Morning
Breakfast Comics

www.smbc-comics.com/comic/2013-06-05

Floating Point (38)

Garcia, Nikoli�

FP Addition

§ More difficult than with integers

§ Can9t just add significands

§ How do we do it?

ú De-normalize to match exponents

ú Add significands to get resulting one

ú Keep the same exponent

ú Normalize (possibly changing exponent)

§ Note: If signs differ, just perform a

subtract instead.

Floating Point (39)

Garcia, Nikoli�

(int) floating_point_expression

Coerces and converts it to the nearest integer (C

uses truncation)

i = (int) (3.14159 * f);

(float) integer_expression

converts integer to nearest floating point

f = f + (float) i;

Casting floats to ints and vice versa

Floating Point (40)

Garcia, Nikoli�

§ Will not always print <true=

§ Most large values of integers don9t have

exact floating point representations!

§ What about double?

int® float® int

if (i == (int)((float) i)) {

printf(“true”);

}

Floating Point (41)

Garcia, Nikoli�

§ Will not always print <true=

§ Small floating point numbers (<1) don9t

have integer representations

§ For other numbers, rounding errors

float® int® float

if (f == (float)((int) f)) {

printf(“true”);

}

þ

Floating Point (43)

Garcia, Nikoli�

§ binary64: Next Multiple of Word Size (64 bits)

§ Double Precision (vs. Single Precision)

ú C variable declared as double

ú Represent numbers almost as small as

2.0 x 10-308 to almost as large as 2.0 x 10308

ú But primary advantage is greater accuracy

due to larger significand

Double Precision Fl. Pt. Representation

031

S Exponent

30 20 19

Significand

1 bit 11 bits 20 bits

Significand (cont9d)

32 bits

Floating Point (44)

Garcia, Nikoli�

Other Floating Point Representations
§ Quad-Precision? Yep! (128 bits) <binary128=

ú Unbelievable range, precision (accuracy)

ú 15 exponent bits, 112 significand bits

§ Oct-Precision? Yep! <binary256=

ú 19 exponent bits, 236 significant bits

§ Half-Precision? Yep! <binary16= or <fp16=

ú 1/5/10 bits

§ Half-Precision?

Yep! <bfloat16=

ú Competing with fp16

ú Same range as fp32!

ú Used for faster ML

en.wikipedia.org/wiki/Floating_point

Floating Point (45)

Garcia, Nikoli�

Floating Point Soup

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

015

S Exponent

14 10 9

Significand

1 bit 5 bits 10 bits

015

S Exponent

14 7 6

Significand

1 bit 8 bits 7 bits

018

S Exponent

17 109

Significand

1 bit 8 bits 10 bits

FP32

FP16

BFLOAT16

TF32

Floating Point (46)

Garcia, Nikoli�

Accelerator int4 int8 int16 fp16 bf16 fp32 tf32

Google TPU v1 x

Google TPU v2 x

Google TPU v3 x

Nvidia Volta TensorCore x x x

Nvidia Ampere TensorCore x x x x x x x

Nvidia DLA x x x

Intel AMX x x

Amazon AWS Inferentia x x x

Qualcomm Hexagon x

Huawei Da Vinci x x

MediaTek APU 3.0 x x x

Samsung NPU x

Tesla NPU x

Who Uses What in Domain Accelerators?

Floating Point (47)

Garcia, Nikoli�

§ Everything so far has had a

fixed set of bits for

Exponent and Significant

ú What if they were variable?

ú Add a <u-bit= to tell whether

number is exact or range

ú <Promises to be to floating

point what floating point is

to fixed point=

§ Claims to save power!

Unum

Dr. John Gustafson

en.wikipedia.org/wiki/Unum_(number_format)

Floating Point (48)

Garcia, Nikoli�

§ Floating Point lets us:

ú Represent numbers containing both integer and fractional parts; makes

efficient use of available bits.

ú Store approximate values for very large and very small #s.

§ IEEE 754 Floating Point Standard is most widely accepted

attempt to standardize interpretation of such numbers

ú Every computer since ~1997 follows these conventions)

§ Summary (single precision, or fp32):

(-1)S x (1 + Significand) x 2(Exponent-127)

Conclusion

Exponent tells Significand how much (2i) to count by (&, 1/4, 1/2, 1, 2, &)

Can store

NaN, ±>

www.h-schmidt.net/FloatConverter/IEEE754.html

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

þ

