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& Quote of the day

“95% of the folks out

there are completely

clueless about floating-

point.”

— James Gosling, 1998-02-28
o Sun Fellow

o Java Inventor
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Review of Numbers

= Computers made to process numbers
= What can we represent in N bits?

o 2N things, and no more! They could be...
o Unsigned integers:

0 to2V-1

* (for N=32, 2N -1 =4,294,967,295)
o Signed Integers (Two’s Complement)

5 _2(N—1) to 2(N—1) -1

 (for N=32,2IN-1) -1 =2,147,483,647)

Garcia, Nikoli¢ |
lés;’}gglgy Floating Point (4) @



&t8: What about other numbers?

= Very large numbers (sec/millennium)
o 31,556,926,00010 (3.155692610 x 1019)

= Very small numbers? (Bohr radius)
o 0.000000000052917710m (5.2917710 x 10-11)

= #s with both integer & fractional parts?
o 1.5

= First consider #3.

o ,..our solution will also help with 1 and 2.
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eic: Representation of Fractions

= “Binary Point” like decimal point signifies
boundary betw. integer and fractional parts:

= Example 6-bit representation
= 10.1010, = 1x2! + 1x2'1 + 1x23 = 2.625,,

XX.YYYY
21 // 7\ \\\2_4

20 21 92 93

= |f we assume “fixed binary point”, range of 6-bit
representations with this format:
o 0to 3.9375 (almost 4)
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§S};}§§l§y Floating Point (6) "



ractional Powers of 2

Mark Lu’s “Binary Float Displayer” i |27
O (1.0 1
l1 |0.5 1/2
2 |10.25 1/4
3 |10.125 1/8
4 [10.0625 1/16
5 |0.03125 1/32
6 |0.015625
7 10.0078125
8 [0.00390625
9 10.001953125
10(0.0009765625
11({0.00048828125
12(0.000244140625
13(/0.0001220703125
14(0.00006103515625
15/0.000030517578125
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Representation of Fractions with Fixed Pt.

= What about addition and multiplication?

o Addition is straightforward 01.100 1.5y,
+ 00.100 0.5,
01.100 1.5, 099 2%
= Multiplication a bit 00.100 0.5,
more complex: 00 000
000 00
0110 O
00000
00000
0000110000

o Where’s the answer, 0.117

* Need to remember where point is... %
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Floating Point



Representation of Fractions

= So far, in our examples we used a “fixed” binary point what we
really want is to “float” the binary point. Why?

o Floating binary point most effective use of our limited bits (and thus
more accuracy in our number representation):

o E.g., put 0.1640625 into binary. Represent as in 5-bits choosing where
to put the binary point.

o ... 000000.001010100000...

o Store these bits = and keep track of the binary point 2 places to the left
of the MSB.

o Any other solution would lose accuracy!

= With floating point representation, each numeral carries an
exponent field recording the whereabouts of its binary point.

= The binary point can be outside the stored bits, so very large and
small numbers can be represented.
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ste Scientific Notation (in Decimal)

mantissa __—~exponent
I 6-‘02ten x 1023
decimal point radix (base)

= Normalized form: no leadings Os
(exactly one digit to left of decimal point)
= Alternatives to representing 1/1,000,000,000

o Normalized: 1.0x107
o Not normalized: 0.1 x10% 10.0x101°
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sic: Scientific Notation (in Binary)

mantissa __—~exponent
—>1.01,, x21
“binary point” radix (base)

= Computer arithmetic that supports it
called floating point, because it represents
numbers where the binary point is not
fixed, as it is for integers
o Declare such variable in Cas £loat —
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sic: Floating Point Representation (1/2)

= Normal format: +1.XXX...X;o 27V,
= Multiple of Word Size (32 bits)

WO

31 30 23 22 0
Is| Exponent | Significand _‘
1bit 8 bits 23 bits

= S represents Sign

" Exponent represents y’s

= Significand represents x’s

= Represent numbers as small as
1.2 x 1038 to as large as 3.4 x 1032

B k 1 Garcia, Nikoli¢
erkele e | ,
|||||||||||||||||||||| y Floatlng POInt (13) —



Floating Point Representation (2/2)

= What if result too large?
o (>3.4x1038 , < -3.4x1038)

o Qverflow! 2 Exponent larger than represented in 8-bit
Exponent field

= What if result too small?
o (>0 and < 1.2x1038 , <0 and > -1.2x10738 )

o Underflow! = Negative exponent larger than represented in

8-bit Exponent field
overflow Underflow overflow

RN .
-2x1038 -1 -2x103% g 2x1038 1 2x10

= What would help reduce chances of overflow and/or
underflow?
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|IEEE 754 Floating Point Standard (1/3)

= Single Precision (DP similar):

31 30 23 22 0
‘S‘ Exponent ‘ Significand _‘
1bit 8 bits 23 bits
= Sign bit: 1 means negative, 0 means positive
= Significand:

o To pack more bits, leading 1 implicit for normalized numbers
a1+ 23 bits single, 1 + 52 bits double
o always true: 0 < Significand < 1 (for normalized numbers)

= Note: 0 has no leading 1, so reserve exponent value O
just for number 0

Garcia, Nikoli¢
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IEEE 754 Floating Point Standard (2/3)

= |EEE 754 uses “biased exponent” representation.

o Designers wanted FP numbers to be used even if no FP
hardware; e.g., sort records with FP numbers using integer
compares

o Wanted bigger (integer) exponent field to represent bigger
numbers.

o 2’s complement poses a problem (because negative numbers
look bigger)

= We're going to see that the numbers are ordered EXACTLY as
in sign-magnitude

l.e., counting from binary odometer 00...00 up to 11...11 goes from O
to +MAX to -0 to -MAX to O
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= IEEE 754 Floating Point Standard (3/3)

= Called Biased Notation, where bias is number subtracted
to get real number

o |EEE 754 uses bias of 127 for single prec.
= Subtract 127 from Exponent field to get exponent value

= Summary (single precision, or fp32):

31 30 23 22 0
‘S‘ Exponent ‘ Significand
1bit 8 bits 23 bits

= (-1)° x (1 + Significand) x 2(Fxponent-127)

= Double precision identical, except exponent bias of
1023 (half, quad similar)...
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= |EEE Standard 754 for
Binary Floating-Point
Arithmetic.

1989
ACM Turing

\\

Prof. Kahan

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html M
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Special Numbers



ste: Representation for &£ oo

" |n FP, divide by 0 should produce == o<, not
overflow.

= Why?
o OK to do further computations with oo

o E.g., X/O > Y may be a valid comparison
o Ask math majors

" |EEE 754 represents &= oo

o Most positive exponent reserved for oo
o Significands all zeroes
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sic:. Representation for O

= Represent 0?
o exponent all zeroes
o significand all zeroes

o What about sign? Both cases valid.
+0: 0 00000000 000000000000000000000N0
-0: 1 00000000 0000000000OOOO0O0O0O0O0OOOOQO

Garcia, Nikoli¢
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&8 Special Numbers

= What have we defined so far? (Single Precision)

Exponent Significand Object

0 0 0

0 nonzero P77

1-254 anything +/- fl. pt. #
255 0 +/- oo

255 nonzero 277

= Professor Kahan had clever ideas;
“Waste not, want not”

o Wanted to use Exp=0,255 & Sig!=0

Garcia, Nikoli¢
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Representation for Not a Number

= What do | get if | calculate sqrt(-
4.0) or 0/07?
o |f oo not an error, these shouldn’t be either
o Called Not a Number (NaN)
o Exponent = 255, Significand nonzero

= Why is this useful?

o= Hope NaNs help with debugging?
o They contaminate: op(NaN, X) = NaN
o Can use the significand to identify which!
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Representation for Denorms (1/2)

= Problem: There’s a gap among representable FP
numbers around O
o Smallest representable pos num:
* a=1.0...,* 2:126 = 2-126
o Second smallest representable pos num:
= b =1.000......1 , * 2126

= (1+0.00...1,) * 2126 Normalization and
= (1 + 2-23) * 2-126 implicit 1 is to blame!
— 2-126 4 9-149
b
o g-0=2126 - QO —HHHH—O—+O—tHHH— + OO
0 a

° b-a=2"% Gaps!

Garcia, Nikoli¢ |
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Representation for Denorms (2/2)

= Solution:

o We still haven’t used Exponent = 0, Significand
nonzero

o DEnormalized number: no (implied) leading 1, implicit
exponent =-126.

o Smallest representable pos num:
» g = 0-149

o Second smallest representable pos num:
« b= -148

= OO -+ 4 OO

0

Garcia, Nikoli¢
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Special Numbers Summary

= Reserve exponents, significands:

Exponent Significand Object

0 0 0

0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- o0

255 nonzero NaN

|
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Examples,
Discussion



= What is the decimal equivalent of:

‘ 1‘ 1000 0001 ‘ 111 0000 0000 0000 0000 0000
S Exponent Significand

(-1)° x (1 + Significand) x 2(Fxponent-127)
(-1)! x (1 +.111), x 2(129127)

-1 x(1.111),x 2%

111.1,

7.5,

Garcia, Nikoli¢
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Example: Representing 1/3

=1/3
=0.33333...,
=0.25+0.0625 + 0.015625 + 0.00390625 + ...
=1/4+1/16 +1/64 + 1/256 + ...
=272+2%+264+28%+ .
=0.0101010101... , * 2°
=1.0101010101... , * 272
o Sign: 0
o Exponent=-2+127=125=01111101
o Significand = 0101010101...

l0]0111 110010101 0101 0101 0101 0101 O[LO _._,
ﬁgﬂ}gﬁ,{ky Floating Point (29) "




Understanding the Significand (1/2)

= Method 1 (Fractions):

o In decimal: 0.340,, = 340,,/1000,,

o |n blnal’y. 0.1102 — 1102/10002 — 610/810
. 11,/100, = 3,0/44,

o Advantage: less purely numerical, more
thought oriented; this method usually helps
people understand the meaning of the
significand better

Garcia, Nikoli¢
A

ﬁgﬁl&%,{ky Floating Point (30) '



Understanding the Significand (2/2)
= Method 2 (Place Values):

o Convert from scientific notation

o |n decimal:

1.6732 = (1x10°) + (6x101) + (7x107%) + (3x1073) + (2x104)
o |n binary:

1.1001 = (1x2°) + (1x2°1) + (0x22) + (0x273) + (1x24)

o |nterpretation of value in each position extends
beyond the decimal/binary point

o Advantage: good for quickly calculating significand
value; use this method for translating FP numbers

M

Garcia, Nikoli¢
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Floating Point
Discussion




Floating Point Fallacy

= FP add associative?
o x=—15x103%,y=1.5x10%,andz=1.0

o X+ (y+2z) =-1.5x103% + (1.5x103¢ + 1.0)
=—1.5x103% + (1.5x103%) = 0.0

o (x+y)+z=(-1.5x103% + 1.5x103%) + 1.0
=(0.0)+1.0=1.0

= Therefore, Floating Point add is not associative!

o Why? FP result approximates real result!

o This example: 1.5 x 1038 is so much larger than 1.0

that 1.5 x 1032 + 1.0 in floating point representation is
still 1.5 x 1038

Garcia, Nikoli¢ |
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Precision and Accu racy Don’t confuse these two terms!

= Precision is a count of the number bits in used to
represent a value.

= Accuracy is the difference between the actual value of
a # and its computer representation.

= High precision permits high accuracy but doesn’t

guarantee it.
o |t is possible to have high precision but low accuracy.

= Example: float pi = 3.14;

= pi will be represented using all 24 bits of the significant
(highly precise), but is only an approximation (not accurate).

Garcia, Nikoli¢
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é1c

Rounding

= When we perform math on real numbers, we
have to worry about rounding to fit the result
in the significant field.

= The FP hardware carries two extra bits of
precision, and then round to get the proper
value

= Rounding also occurs when converting:

C

f

IIIIIIIIIIIIIIIIIIII

ouble to a single precision value, or

oating point number to an integer
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= Round towards + oo Examples in
o ALWAYS round “up”: 2.001 — 3, -2.001 —> -2 decimal
= Round towards - oo (but, of
o ALWAYS round “down”:1.999 — 1,-1.999 —» -2 course,

=  Truncate IEEE754 in
binary)

o Just drop the last bits (round towards 0)

= Unbiased (default mode). Midway? Round to even
o Normal rounding, almost: 24— 2,26 —> 3,25— 2,355 4
o Round like you learned in grade school (nearest int)

o Except if the value is right on the borderline, in which case we round to
the nearest EVEN number

o Ensures fairness on calculation

o This way, half the time we round up on tie, the other half time we round
down. Tends to balance out inaccuracies

Garcia, Nikoli¢
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Now you know why you see these errors...

IEEE 754 Converter (JavaScript), V0.22

Exponent Mantissa

Value: -2 1.2000000476837158
Encoded as: 125 1677722
Binary: (&4 &4 ()3 8 ([ 4 4 () vEvE
You entered 0.3
Value actually stored in float: | 0.300000011920928955078125
Error due to conversion: 1.1920928955078125E-8
Binary Representation 00111110100110011001100110011010

Hexadecimal Representation | 0x3e99999a

Prove you are human:

01+02=7

WELCOME TO

THE SECRET 0.30000000000000004 Satu rday Morning
Breakfast Comics

Wwww . smbc-comics.com/comic/2013-06-05
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FP Addition

= More difficult than with integers
= Can’t just add significands

= How do we do it?

o De-normalize to match exponents

o Add significands to get resulting one

o Keep the same exponent

o Normalize (possibly changing exponent)

= Note: If signs differ, just perform a

subtract instead.

IIIIIIIIIIIIIIIIIIIIII
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Casting floats to ints and vice versa

(int) floating point expression

Coerces and converts it to the nearest integer (C
uses truncation)

i = (int) (3.14159 * f);

(float) integer expression
converts integer to nearest floating point
f = £ + (float) 1i;

Berkele ~ Garcia, Nikoli¢
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int —> float— int
if (i == (int) ((float) i)) {

printf (“true”) ;
}
= Will not always print “true”

= Most large values of integers don’t have
exact floating point representations!

= \WWhat about double?

B€rkele ~ Garcia, Nikoli¢
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float —> i1nt— float

if (£ == (float) ((int) £)) {
printf (“true”) ;

}
= Will not always print “true”

= Small floating point numbers (<1) don’t
have integer representations

"= For other numbers, rounding errors

Garcia, Nikoli¢

léggglgglgy Floating Point (41) "



Other
Floating Point
Representations




Double Precision Fl. Pt. Representation
= binary64: Next Multiple of Word Size (64 bits)

3130 20 19 0
S| Exponent | Significand |
1 bit 11 bits 20 bits
| Significand (cont’d) |
32 bits

= Double Precision (vs. Single Precision)
o Cvariable declared as double

o Represent numbers almost as small as
2.0 x 10398 to almost as large as 2.0 x 103%¢

o But primary advantage is greater accuracy
due to larger significand N
Berkeley BErSI8 :
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sic: Other Floating Point Representations

= Quad-Precision? Yep! (128 bits) “binary128”

o Unbelievable range, precision (accuracy)

o 15 exponent bits, 112 significand bits

= QOct-Precision? Yep! “binary256”
o 19 exponent bits, 236 significant bits

= Half-Precision? Yep! “binary16” or “fp16”
o 1/5/10 bits

= Half-Precision?
Yep! “bfloat16”
o Competing with fp16
o Same range as fp32!

O Used for‘ fa Ster ML bfloat16: Brain Floating Point Format
H s El E E E E E M M M M M M M

en.wikipedia.org/wiki/Floating point _
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Floating Point Soup

3130 23 22 0
FP32 || Exponent | Significand
1bit  8bits 23 bits
15 14 109 0
FP16 ‘S‘ Exponent ‘ Significand ‘
1 bit 5 bits 10 bits
15 14 76 0
BFLOAT16‘S‘ Exponent ‘ Significand ‘
1 bit 8 bits 7 bits
18 17 109 0
TF32 ‘ S ‘ Exponent ‘ Significand ‘
1bit  8bits 10 bits Garcia, Nikolé
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Who Uses What in Domain Accelerators?

Accelerator int4 int8 inti6 fpi6 bfi6 fp32 tf32
Google TPU va X
Google TPU v2 X
Google TPU v3 X
Nvidia Volta TensorCore X X
Nvidia Ampere TensorCore X X X X X X
Nvidia DLA X X X
Intel AMX X X
Amazon AWS Inferentia X X X
Qualcomm Hexagon X
Huawei Da Vinci X X
MediaTek APU 3.0 X X X
Samsung NPU X
Tesla NPU X

Berkeley

UNIVERSITY OF CALIFORNIA
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Unum

en.wikipedia.org/wiki/Unum (number format)

= Everything so far has had a
fixed set of bits for
Exponent and Significant

o What if they were variable?

o Add a “u-bit” to tell whether
number is exact or range

o “Promises to be to floating
point what floating point is
to fixed point”

= Claims to save power!

Dr. John Gustafson
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www.h-schmidt.net/FloatConverter/IEEE754 . html
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* Floating Point lets us:

o Represent numbers containing both integer and fractional parts; makes
efficient use of available bits.

o Store approximate values for very large and very small #s.

= |EEE 754 Floating Point Standard is most widely accepted
attempt to standardize interpretation of such numbers

o Every computer since ~1997 follows these conventions)

= Summary (single precision, or fp32):

31 30 23 22 0

S| Exponent | Significand
1bit 8 bits 23 bits '~ Canstore |
(-1)° x (1 + Significand) x 2(Exponent-127) f_ﬂ?ﬂ;if‘@

I\

I\
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