
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikolić

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia,

RISC-V Assembly Language

RISC-V (2)

Garcia, Nikolić

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Compiler

Assembler

Hardware Architecture Description
(e.g., block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw x3, 0(x10)
lw x4, 4(x10)
sw x4, 0(x10)
sw x3, 4(x10)

1000 1101 1110 0010 0000 0000 0000 0000

1000 1110 0001 0000 0000 0000 0000 0100

1010 1110 0001 0010 0000 0000 0000 0000

1010 1101 1110 0010 0000 0000 0000 0100

Out = AB+CD

A

B

C

D

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg []

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

wb

Anything can be represented

as a number,

i.e., data or instructions

RISC-V (3)

Garcia, Nikolić

Basic job of a CPU: execute lots of instructions.

Instructions are the primitive operations that the CPU
may execute.

 Like a sentence: operations (verbs) applied to operands
(objects) processed in sequence �

Different CPUs implement different sets of instructions.
The set of instructions a particular CPU implements is
an Instruction Set Architecture (ISA).

 Examples: ARM (cell phones), Intel x86 (i9, i7, i5, i3),
IBM Power, IBM/Motorola PowerPC (old Macs), MIPS,
RISC-V, ...

Assembly Language

RISC-V (4)

Garcia, Nikolić

�A new book was just released which is
based on a new concept - teaching
computer science through assembly
language (Linux x86 assembly language,
to be exact). This book teaches how the
machine itself operates, rather than just
the language. I've found that the key
difference between mediocre and excellent programmers is whether
or not they know assembly language. Those that do tend to

understand computers themselves at a much deeper level.

Although [almost!] unheard of today, this concept isn't really all that
new -- there used to not be much choice in years past. Apple
computers came with only BASIC and assembly language, and
there were books available on assembly language for kids. This is
why the old-timers are often viewed as 'wizards': they had to know

assembly language programming.�
-- slashdot.org comment, 2004-02-05

Book: Programming From the Ground Up

RISC-V (5)

Garcia, Nikolić

Early trend was to add more and more instructions to
new CPUs to do elaborate operations

 VAX architecture had an instruction to multiply
polynomials!

RISC philosophy (Cocke IBM, Patterson, Hennessy,
1980s) � Reduced Instruction Set Computing

 Keep the instruction set small and simple, makes it
easier to build fast hardware.

 Let software do complicated operations by composing
simpler ones.

 This went against the convention wisdom of the time.
(he who laughs last, laughs best)

Instruction Set Architectures

RISC-V (6)

Garcia, Nikolić

Patterson and Hennessy win Turing!

RISC-V (7)

Garcia, Nikolić

New open-source, license-free ISA spec

 Supported by growing shared software ecosystem

 Appropriate for all levels of computing system, from
microcontrollers to supercomputers

 32-bit, 64-bit, and 128-bit variants
(we�re using 32-bit in class,
textbook uses 64-bit)

Why RISC-V instead of Intel 80x86?

 RISC-V is simple, elegant.
Don�t want to get bogged
down in gritty details.

 RISC-V has exponential adoption

RISC-V Architecture

RISC-V Green Card

IBM 360 Green Card

https://cs61c.org/resources/

https://cs61c.org/resources/

RISC-V (8)

Garcia, Nikolić

 Started in Summer 2010 to support
open research and teaching at
UC Berkeley
 Lineage can be traced to RISC-I/II projects (1980s)

 As the project matured, it migrated
to RISC-V foundation (www.riscv.org)

 Many commercial and research projects
based on RISC-V, open-source and proprietary
 Widely used in education

 Read more:
 https://riscv.org/risc-v-history/

https://riscv.org/risc-v-genealogy/

RISC-V Origins

RISC-I

RISC-II

http://www.riscv.org
https://riscv.org/risc-v-history/
https://riscv.org/risc-v-genealogy/

RISC-V (10)

Garcia, Nikolić

 Instruction set for a particular architecture (e.g.
RISC-V) is represented by the Assembly language

 Each line of assembly code represents one
instruction for the computer

Instruction Set

�instruction sets�

RISC-V (11)

Garcia, Nikolić

Unlike HLL like C or Java, assembly cannot use
variables

 Why not? Keep Hardware Simple

Assembly operands are registers
 Limited number of special locations built directly

into the hardware

 Operations can only be performed on these!

Benefit: Since registers are directly in
hardware, they�re very fast (faster than 0.25ns)

 Recall light is 3x108m/s = 0.3m/ns = 30cm/ns =
10cm/0.3ns!!!� where 0.3ns is the clock period of a
3.33GHz computer

Assembly Variables: Registers (1/3)

RISC-V (12)

Garcia, Nikolić

Aside: Registers are Inside the Processor

Processor-Memory Interface I/O-Memory Interfaces

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Enable?

Read/Write

Address

Write Data

Read Data

Input

Output

Bytes

RISC-V (13)

Garcia, Nikolić

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip
CPU

Registers

RISC-V (14)

Garcia, Nikolić

Jim Gray’s Storage Latency Analogy:

How Far Away is the Data?

Jim Gray

Turing Award

B.S. Cal 1966

Ph.D. Cal 1969

Registers1

This Campus

My Head 1 min[ns]

RISC-V (15)

Garcia, Nikolić

 Drawback: Since registers are in hardware,
there is a predetermined number of them

 Solution: RISC-V code must be very carefully put
together to efficiently use registers

 32 registers in RISC-V
 Why 32?

Smaller is faster, but too small is bad. Goldilocks
principle (�This porridge is too hot; This porridge
is too cold; this porridge is just right�)

 Each RISC-V register is 32 bits wide (in
RV32 variant)

 Groups of 32 bits called a word in RV32
 P&H textbook uses the 64-bit variant RV64

Assembly Variables: Registers (2/3)

RISC-V (16)

Garcia, Nikolić

 Registers are numbered from 0 to 31
 Referred to by number x0 � x31

 x0 is special, always holds value zero

 So only 31 registers able to hold variable values

 Each register can be referred to by number or
name

 Will add names later

Assembly Variables: Registers (3/3)

RISC-V (17)

Garcia, Nikolić

 In C (and most high-level languages) variables
declared first and given a type. E.g.,
int fahr, celsius;
char a, b, c, d, e;

 Each variable can ONLY represent a value of
the type it was declared as (cannot mix and
match int and char variables).

 In assembly language, the registers have no
type

 Operation determines how register contents are
treated

C, Java variables vs. registers

RISC-V (18)

Garcia, Nikolić

 Make your code more readable: comments!

 Hash (#) is used for RISC-V comments
 anything from hash mark to end of line is a

comment and will be ignored

 This is just like the C99 //

 Note: Different from C.
 C comments have format

/* comment */
so they can span many lines

Comments in Assembly

RISC-V (19)

Garcia, Nikolić

Aside: Apollo Guidance Computer

Margaret Hamilton
(Wikimedia commons)

Assembly code with comments
(ABC News, 2018)

RISC-V (20)

Garcia, Nikolić

 In assembly language, each statement
(called an Instruction), executes exactly one
of a short list of simple commands

 Unlike in C (and most other high-level
languages), each line of assembly code
contains at most 1 instruction

 Instructions are related to operations (=, +,
-, *, /) in C or Java

 Ok, enough already�gimme my RV32!

Assembly Instructions

RISC-V (22)

Garcia, Nikolić

 Syntax of Instructions:
 one two, three, four

 where:

 one = operation by name

 two = operand getting result (�destination,� x1)

 three = 1st operand for operation (�source1,� x2)

 four = 2nd operand for operation (�source2,� x3)

 Syntax is rigid:
 1 operator, 3 operands

 Why? Keep hardware simple via regularity

RISC-V Addition and Subtraction (1/4)

add x1, x2, x3

RISC-V (23)

Garcia, Nikolić

 Addition in Assembly
 Example: add x1,x2,x3 (in RISC-V)

 Equivalent to: a = b + c (in C)

 where C variables ⇔ RISC-V registers are:
a ⇔ x1, b ⇔ x2, c ⇔ x3

 Subtraction in Assembly
 Example: sub x3,x4,x5 (in RISC-V)

 Equivalent to: d = e - f (in C)

 where C variables ⇔ RISC-V registers are:
d ⇔ x3, e ⇔ x4, f ⇔ x5

Addition and Subtraction of Integers (2/4)

RISC-V (24)

Garcia, Nikolić

 How to do the following C statement?

a = b + c + d - e;

 Break into multiple instructions
add x10, x1, x2 # a_temp = b + c

add x10, x10, x3 # a_temp = a_temp + d

sub x10, x10, x4 # a = a_temp - e

 Notice: A single line of C may break up into
several lines of RISC-V.

 Notice: Everything after the hash mark on
each line is ignored (comments).

Addition and Subtraction of Integers (3/4)

RISC-V (25)

Garcia, Nikolić

 How do we do this?

f = (g + h) - (i + j);

 Use intermediate temporary register
add x5, x20, x21 # a_temp = g + h

add x6, x22, x23 # b_temp = i + j

sub x19, x5, x6 # f = (g + h)- (i + j)

• A good compiler may do:

Addition and Subtraction of Integers (4/4)

RISC-V (27)

Garcia, Nikolić

 Immediates are numerical constants.

 They appear often in code, so there are special
instructions for them.

 Add Immediate:
addi x3,x4,10 (in RISC-V)

f = g + 10 (in C)

 where RISC-V registers x3,x4 are associated with C

variables f, g

 Syntax similar to add instruction, except that
last argument is a number instead of a register.

Immediates

RISC-V (28)

Garcia, Nikolić

 There is no Subtract Immediate in RISC-V: Why?
There are add and sub, but no addi counterpart

 Limit types of operations that can be done to
absolute minimum

 if an operation can be decomposed into a simpler
operation, don�t include it

 addi �, -x = �subi �, x� => so no �subi�

addi x3,x4,-10 (in RISC-V)
f = g - 10 (in C)

 where RISC-V registers x3,x4 are associated with C

variables f, g, respectively

Immediates

RISC-V (29)

Garcia, Nikolić

 One particular immediate, the number zero
(0), appears very often in code.

 So the register zero (x0) is �hard-wired� to

value 0; e.g.
add x3,x4,x0 (in RISC-V)

f = g (in C)

 where RISC-V registers x3,x4 are associated

with C variables f, g

 Defined in hardware, so an instruction
add x0,x3,x4 will not do anything!

Register Zero

