

RISC-V (31)

Garcia, Nikolić

 Addition/subtraction
add rd, rs1, rs2

R[rd] = R[rs1] + R[rs2]
sub rd, rs1, rs2

R[rd] = R[rs1] - R[rs2]

 Add immediate
addi rd, rs1, imm

R[rd] = R[rs1] + imm

RV32 So Far…

RISC-V (32)

Garcia, Nikolić

Data Transfer: Load from and Store to memory

Much larger place

to hold values,

but slower than

registers!

Very fast,

but limited space to hold values!

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Enable?

Read/Write

Address

Write Data

Read Data

Input

Output

Bytes

= Store to

Memory

= Load from

Memory

Program

Data

RISC-V (33)

Garcia, Nikolić

 Data typically smaller than 32 bits, but rarely smaller
than 8 bits (e.g., char type)–works fine if everything is a
multiple of 8 bits

 8 bit chunk is called a byte (1 word = 4 bytes)

 Memory addresses are

really in bytes, not words

 Word addresses are
4 bytes apart
 Word address is same

as address of rightmost byte
– least-significant byte
(i.e. Little-endian convention)

Memory Addresses are in Bytes

31 0

3

2

1

0

RISC-V (34)

Garcia, Nikolić

 Data typically smaller than 32 bits, but rarely smaller
than 8 bits (e.g., char type)–works fine if everything is a
multiple of 8 bits

 8 bit chunk is called a byte (1 word = 4 bytes)

 Memory addresses are

really in bytes, not words

 Word addresses are
4 bytes apart
 Word address is same

as address of rightmost byte
– least-significant byte
(i.e. Little-endian convention)

Memory Addresses are in Bytes

Least-significant byte

in a word

31 24 23 16 15 8 7 0

Least-significant byte

gets the smallest address

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

RISC-V (35)

Garcia, Nikolić

The adjective endian has its origin in the writings of 18th century writer Jonathan Swift. In the 1726 novel

Gulliver's Travels, he portrays the conflict between sects of Lilliputians divided into those breaking the

shell of a boiled egg from the big end or from the little end. He called them the "Big-Endians" and the

"Little-Endians".

Big Endian vs. Little Endian

Little Endian
ADDR3 ADDR2 ADDR1 ADDR0

BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Examples

Names in the US (e.g., Bora Nikolić)

Internet names (e.g., cs.berkeley.edu)

Dates written in Europe DD/MM/YYYY (e.g., 07/09/2020)

Eating Pizza skinny part first

Consider the number 1025 as we typically write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

• The order in which BYTES are stored in memory

• Bits always stored as usual (E.g., 0xC2=0b 1100 0010)

en.wikipedia.org/wiki/endianness

Big Endian
ADDR3 ADDR2 ADDR1 ADDR0

BYTE0 BYTE1 BYTE2 BYTE3

00000001 00000100 00000000 00000000

Examples

Names in China or Hungary (e.g., Nikolić Bora)

Java Packages: (e.g., org.mypackage.HelloWorld)

Dates in ISO 8601 YYYY-MM-DD (e.g., 2020-09-07)

Eating Pizza crust first

RISC-V (37)

Garcia, Nikolić

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip
e.g. DDR3/4/5

HBM/HBM2/3

Physical Memor y

Random -Access Memo ry (RAM)

Core

Registers

RISC-V (38)

Garcia, Nikolić

Speed of Registers vs. Memory

 Given that

 Registers: 32 words (128 Bytes)

 Memory (DRAM): Billions of bytes

(2 GB to 64 GB on laptop)

 and physics dictates…

 Smaller is faster

 How much faster are registers than DRAM??

 About 50-500 times faster! (in terms of latency of one

access - tens of ns)

 But subsequent words come every few ns

RISC-V (39)

Garcia, Nikolić

Jim Gray’s Storage Latency Analogy:

How Far Away is the Data?

Jim Gray

Turing Award

B.S. Cal 1966

Ph.D. Cal 1969

he
The
ima… T

h T
he
im T

h
e T

h
eT
hT

h
e

T
hT

he
im

The
ima
ge …

The
image
part …

T
h

T
hT

h
T
h

T
h
e
T
h T

h
T
he T

he The
ima… The

i… T
he

The
imag… The

ima… The
image … The

image … The
i…

Registers

Memory

1

100
Sacramento

My Head

1.5 hr

1 min

T
h
e T

h
e

T
h
e

T
h T

h
e

T
he
im The

ima
g… The

ima
ge … The

ima
g…

The
ima
ge …

The
imag
e p… The

image
part … The

image
part … The

image
part … The

image
part … The

image
part wit … The

image
part … The image

part with
relationsh … The

image
part wit … The

im…

[ns]

RISC-V (40)

Garcia, Nikolić

 C code

int A[100];

g = h + A[3];

 Using Load Word (lw) in RISC-V:

lw x10,12(x15) # Reg x10 gets A[3]

add x11,x12,x10 # g = h + A[3]

Note: x15 – base register (pointer to A[0])

12 – offset in bytes

Offset must be a constant known at assembly time

Load from Memory to Register

40

Data flow

RISC-V (41)

Garcia, Nikolić

 C code

int A[100];

A[10] = h + A[3];

 Using Store Word (sw) in RISC-V:

lw x10,12(x15) # Temp reg x10 gets A[3]

add x10,x12,x10 # Temp reg x10 gets h + A[3]

sw x10,40(x15) # A[10] = h + A[3]

Note: x15 – base register (pointer)

12,40 – offsets in bytes

x15+12 and x15+40 must be multiples of 4

Store from Register to Memory

41

Data flow

RISC-V (42)

Garcia, Nikolić

Loading and Storing Bytes

 In addition to word data transfers
(lw, sw), RISC-V has byte data transfers:
 load byte: lb

 store byte: sb

 Same format as lw, sw

 E.g., lb x10,3(x11)
 contents of memory location with address = sum of “3”

+ contents of register x11 is copied to the low byte
position of register x10.

byte

loaded

xzzz zzzz

This bit
…is copied to “sign-extend”

xxxx xxxx xxxx xxxx xxxx xxxx
x10:

RISC-V (43)

Garcia, Nikolić

Example: What is in x12 ?

addi x11,x0,0x3F5

sw x11,0(x5)

lb x12,1(x5)

x5

x11
x12

Memory

RISC-V (44)

Garcia, Nikolić

Substituting addi

The following two instructions:
lw x10,12(x15) # Temp reg x10 gets A[3]

add x12,x12,x10 # reg x12 = reg x12 + A[3]

Replace addi:

addi x12, value # value in A[3]

But involve a load from memory!

Add immediate is so common that it deserves

its own instruction!

RISC-V (46)

Garcia, Nikolić

 Addition/subtraction
add rd, rs1, rs2
sub rd, rs1, rs2

 Add immediate
addi rd, rs1, imm

 Load/store
lw rd, rs1, imm
lb rd, rs1, imm
lbu rd, rs1, imm
sw rs1, rs2, imm
sb rs1, rs2, imm

RV32 So Far…

RISC-V (47)

Garcia, Nikolić

 Based on computation, do something different

 In programming languages: if-statement

 RISC-V: if-statement instruction is

beq reg1,reg2,L1

means: go to statement labeled L1
if (value in reg1) == (value in reg2)

….otherwise, go to next statement

 beq stands for branch if equal

 Other instruction: bne for branch if not equal

Computer Decision Making

47

RISC-V (48)

Garcia, Nikolić

Types of Branches

 Branch – change of control flow

 Conditional Branch – change control flow
depending on outcome of comparison
 branch if equal (beq) or branch if not equal (bne)

 Also branch if less than (blt) and branch if greater
than or equal (bge)

 And unsigned versions (bltu, bgeu)

 Unconditional Branch – always branch
 a RISC-V instruction for this: jump (j), as in
j label

48

RISC-V (49)

Garcia, Nikolić

 Assuming translations below, compile if block

f → x10 g → x11 h → x12
i → x13 j → x14

if (i == j) bne x13,x14,Exit

f = g + h; add x10,x11,x12

Exit:

 May need to negate branch condition

Example if Statement

49

RISC-V (50)

Garcia, Nikolić

 Assuming translations below, compile

f → x10 g → x11 h → x12
i → x13 j → x14

if (i == j) bne x13,x14,Else

f = g + h; add x10,x11,x12

else j Exit

f = g – h; Else:sub x10,x11,x12

Exit:

Example if-else Statement

50

RISC-V (51)

Garcia, Nikolić

 General programs need to test < and > as well.

 RISC-V magnitude-compare branches:

“Branch on Less Than”

Syntax: blt reg1,reg2, Label

Meaning: if (reg1 < reg2) goto Label;

“Branch on Less Than Unsigned”

Syntax: bltu reg1,reg2, Label

Meaning: if (reg1 < reg2)// treat registers

as unsigned integers

goto label;

Also “Branch on Greater or Equal” bge and bgeu

Note: No ‘bgt’ or ‘ble’ instructions

Magnitude Compares in RISC-V

51

RISC-V (52)

Garcia, Nikolić

Loops in C/Assembly

 There are three types of loops in C:

 while

 do … while

 for

 Each can be rewritten as either of the other two,

so the same branching method can be applied

to these loops as well.

 Key concept: Though there are multiple ways of

writing a loop in RISC-V, the key to decision-

making is conditional branch

Introduction (53)

Garcia, Nikolić

int A[20];

int sum = 0;

for (int i=0; i < 20; i++)

sum += A[i];

add x9, x8, x0 # x9=&A[0]

add x10, x0, x0 # sum=0

add x11, x0, x0 # i=0

addi x13,x0, 20 # x13=20

Loop:

bge x11,x13,Done

lw x12, 0(x9) # x12=A[i]

add x10,x10,x12 # sum+=

addi x9, x9,4 # &A[i+1]

addi x11,x11,1 # i++

j Loop

Done:

C Loop Mapped to RISC-V Assembly

