

Introduction (55)

Garcia, Nikolić

 Add/sub
add rd, rs1, rs2
sub rd, rs1, rs2

 Add immediate
addi rd, rs1, imm

 Load/store
lw rd, rs1, imm
lb rd, rs1, imm
lbu rd, rs1, imm
sw rs1, rs2, imm
sb rs1, rs2, imm

 Branching
beq rs1, rs2, Label
bne rs1, rs2, Label
bge rs1, rs2, Label
blt rs1, rs2, Label
bgeu rs1, rs2, Label
bltu rs1, rs2, Label
j Label

RV32 So Far…

RISC-V (56)

Garcia, Nikolić

RISC-V Logical Instructions
 Useful to operate on fields of bits within a word

 e.g., characters within a word (8 bits)

 Operations to pack /unpack bits into words

 Called logical operations

Logical operations

C

operators

Java

operators

RISC-V

instructions

Bit-by-bit AND & & and

Bit-by-bit OR | | or

Bit-by-bit XOR ^ ^ xor

Shift left logical << << sll

Shift right logical >> >> srl

RISC-V (57)

Garcia, Nikolić

 Always two variants

 Register: and x5, x6, x7 # x5 = x6 & x7

 Immediate: andi x5, x6, 3 # x5 = x6 & 3

 Used for ‘masks’

 andi with 0000 00FFhex isolates the least significant

byte

 andi with FF00 0000hex isolates the most significant

byte

RISC-V Logical Instructions

RISC-V (58)

Garcia, Nikolić

No NOT in RISC-V

 There is no logical NOT in RISC-V

 Use xor with 11111111two

 Remember - simplicity…

RISC-V (59)

Garcia, Nikolić

 Shift Left Logical (sll) and immediate (slli):

slli x11,x12,2 #x11=x12<<2

 Store in x11 the value from x12 shifted by 2 bits to the

left (they fall off end), inserting 0’s on right; << in C.

 Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

 After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

 What arithmetic effect does shift left have?

 Shift Right: srl is opposite shift; >>

Logical Shifting

RISC-V (60)

Garcia, Nikolić

 Shift right arithmetic (sra, srai) moves n bits to the

right (insert high-order sign bit into empty bits)

 For example, if register x10 contained

1111 1111 1111 1111 1111 1111 1110 0111two= -25ten

 If execute srai x10, x10, 4, result is:

1111 1111 1111 1111 1111 1111 1111 1110two= -2ten

• Unfortunately, this is NOT same as dividing by 2n

− Fails for odd negative numbers

− C arithmetic semantics is that division should round

towards 0

Arithmetic Shifting

RISC-V (62)

Garcia, Nikolić

Assembler to Machine Code (More Later in Course)

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler source files (text)

Machine code object files

Pre-built object file libraries

Machine code executable file

Assembler converts human-

readable assembly code to

instruction bit patterns

RISC-V (63)

Garcia, Nikolić

How Program is Stored

Memory

Bytes

Program

Data

One RISC-V Instruction = 32 bits

RISC-V (64)

Garcia, Nikolić

 Instruction is fetched from memory, then control unit executes instruction

using datapath and memory system, and updates PC

(default add +4 bytes to PC, to move to next sequential instruction; branches,

jumps alter)

Program Execution

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Read

Instruction

Instruction

Address
Bytes

Program

Data

 PC (program counter)

is a register internal to

the processor that

holds byte address of

next instruction to be

executed

RISC-V (65)

Garcia, Nikolić

 Symbolic register names

 E.g., a0-a7 for argument registers (x10-x17) for

function calls

 E.g., zero for x0

 Pseudo-instructions

 Shorthand syntax for common assembly idioms

 E.g., mv rd, rs = addi rd, rs, 0

 E.g., li rd, 13 = addi rd, x0, 13

 E.g., nop = addi x0, x0, 0

Helpful RISC-V Assembler Features

RISC-V (67)

Garcia, Nikolić

main() {

int i,j,k,m;

...

i = mult(j,k); ...

m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){

int product = 0;

while (mlier > 0) {

product = product + mcand;

mlier = mlier -1; }

return product;

}

C Functions

What information must

compiler/programmer

keep track of?

What instructions can

accomplish this?

RISC-V (68)

Garcia, Nikolić

1. Put arguments in a place where function can access

them

2. Transfer control to function

3. Acquire (local) storage resources needed for function

4. Perform desired task of the function

5. Put return value in a place where calling code can

access it and restore any registers you used; release

local storage

6. Return control to point of origin, since a function can

be called from several points in a program

Six Fundamental Steps in Calling a Function

RISC-V (69)

Garcia, Nikolić

RISC-V Function Call Conventions

 Registers faster than memory, so use them

 a0–a7 (x10-x17): eight argument registers

to pass parameters and two return values

(a0-a1)

 ra: one return address register to return to

the point of origin (x1)

 Also s0-s1 (x8-x9) and s2-s11

(x18-x27): saved registers (more about

those later)

RISC-V (70)

Garcia, Nikolić

... sum(a,b);... /* a,b:s0,s1 */

}

int sum(int x, int y) {

return x+y;

}

address (shown in decimal)

1000

1004

1008

1012

1016

…

2000

2004

Instruction Support for Functions (1/4)

C
R

IS
C

-V

In RISC-V, all instructions are 4 bytes,

and stored in memory just like data.

So, here we show the addresses of

where the programs are stored.

RISC-V (71)

Garcia, Nikolić

... sum(a,b);... /* a,b:s0,s1 */

}

int sum(int x, int y) {

return x+y;

}

address (shown in decimal)

1000 mv a0,s0 # x = a

1004 mv a1,s1 # y = b

1008 addi ra,zero,1016 #ra=1016

1012 j sum #jump to sum

1016 … # next inst.

…

2000 sum: add a0,a0,a1

2004 jr ra #new instr.“jump reg”

Instruction Support for Functions (2/4)

C
R

IS
C

-V

RISC-V (72)

Garcia, Nikolić

... sum(a,b);... /* a,b:s0,s1 */

}

int sum(int x, int y) {

return x+y;

}

Instruction Support for Functions (3/4)

C
R

IS
C

-V
• Question: Why use jr here? Why not use j?

• Answer: sum might be called by many places, so
we can’t return to a fixed place. The calling proc
to sum must be able to say “return here”
somehow.

…

2000 sum: add a0,a0,a1

2004 jr ra #new instr.“jump reg”

RISC-V (73)

Garcia, Nikolić

 Single instruction to jump and save return address:

jump and link (jal)

 Before:

1008 addi ra,zero,1016 # ra=1016

1012 j sum # goto sum

 After:

1008 jal sum # ra=1012,goto sums

 Why have a jal?

 Make the common case fast: function calls very common

 Reduce program size

 Don’t have to know where code is in memory with jal!

Instruction Support for Functions (4/4)

RISC-V (74)

Garcia, Nikolić

 Invoke function: jump and link instruction (jal)

(really should be laj “link and jump”)

 “link” means form an address or link that points to

calling site to allow function to return to proper address

 Jumps to address and simultaneously saves the address of the

following instruction in register ra

jal FunctionLabel

 Return from function: jump register instruction (jr)

 Unconditional jump to address specified in register: jr ra

 Assembler shorthand: ret = jr ra

RISC-V Function Call Instructions

RISC-V (75)

Garcia, Nikolić

Actually, only two instructions:

 jal rd, Label – jump-and-link

 jalr rd, rs, imm – jump-and-link register

j, jr and ret are pseudoinstructions!

 j: jal x0, Label

Summary of Instruction Support

