Logical
Instructions

BAR

LN

= Add/sub = Branching

add rd, rsl, rs2 beq rsl, rs2, Label
sub rd, rsl, rs2 bne «rsl, rs2, Label
. . bge rsl, rs2, Label
= Add immediate blt rsl, rs2, Label
addi rd, rsl, imm bgeu rsl, rs2, Label
bltu rsl, rs2, Label

= |Load/store j Label

lw rd, rsl, imm
lb rd, rsl, imm
lbu rd, rsl, imm
sw rsl, rs2, imm
sb rsl, rs2, imm

Garcia, Nikolic
EE%TE!&EL?Y Introduction (55) @®©

NC 8A

sic: RISC-V Logical Instructions

= Useful to operate on fields of bits within a word
o e.g., characters within a word (8 bits)

= QOperations to pack /unpack bits into words

= (Called logical operations

C Java RISC-V
Logical operations | operators | operators instructions
Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit XOR 4 A XOor
Shift left logical << << sll
Shift right logical P >> srl

Berkeley RISCY (56) (OO

IIIIIIIIIIIIIIIIIIIIII

BAR

LN

IIIIIIIIIIIIIIIIIIIIII

Always two variants
Register: and x5, x6, x7 # x5 = x6 & x7

Immediate: andi x5, x6, 3 # x5 = x6 & 3

m]

m]

m]

m]

Used for ‘masks’

andi with 0000 OOFF
byte
andi with FF00 0000
byte

hex

hex

isolates the least significant

isolates the most significant

Garcia, Nikoli¢

RISC-V (57) @

sic: No NOT in RISC-V

= There is no logical NOT in RISC-V
o Use xor with 11111111,

o Remember - simplicity...

Garcia, Nikoli¢

Berkeley RISCV (58) QOO

BABRA

@ Logical Shifting

= Shift Left Logical (s11) and immediate (s111i):
slli x11,x12,2 #x11=x12<<2

o Store in x11 the value from x12 shifted by 2 bits to the
left (they fall off end), inserting 0’s on right; << in C.

o Before: 0000 0002, ,
0000 0000 0000 0OOO 0OOOO 0OOOO 0OOOO 0O10.,,

o After: 0000 0008

~hex

0000 0000 0000 0000 0OOOO 0OOOO 00OO 1000,
o What arithmetic effect does shift left have?

= Shift Right: sr1l is opposite shift; >>

Garcia, Nikoli¢

Berkeley RISCAV (59) O8O

Arithmetic Shifting

= Shift right arithmetic (sra, srai) moves n bits to the
right (insert high-order sign bit into empty bits)

= For example, if register x10 contained
1111 1111 1111 1111 1111 1111 1110 0111_ = -25

ten

= |f execute srai x10, x10, 4, resultis:
1111 1111 1111 1111 1111 1111 1111 1110, = -2

two™ ten

« Unfortunately, this is NOT same as dividing by 2"
— Fails for odd negative numbers

— C arithmetic semantics is that division should round
towards O

Garcia, Nikoli¢

1«%&21&%1«?)7 RISC-V (60) | @

A Bit About
Machine
Program

gsl: Assembler to Machine Code (More Later in Course)

Assembler source files (text)

Assembler converts human-
readable assembly code to
instruction bit patterns

Assembler Assembler

Machine code object files
lib.o J

Linker

a.out J Pre-built object file libraries

Machine code executable file

Garcia, Nikoli¢

Berkeley RISCY (62) QOO

Garcia, Nikoli¢

Berkeley RISCV (63) O8O

& Program Execution

Processor

= PC (program counter)
Read is a register internal to
gtruction the processor that
holds byte address of
next instruction to be

Instruction execute d
Address

00000000

Arithmetic-Logic
Unit (ALV)

= |nstruction is fetched from memory, then control unit executes instruction
using datapath and memory system, and updates PC
(default add +4 bytes to PC, to move to next sequential instruction; branches,
jumps alter)

Garcia, Nikoli¢
Berkeley RISC (64) O8O

&ia: Helpful RISC-V Assembler Features

= Symbolic register names

o E.g., a0-a7 for argument registers (x10-x17) for
function calls

o E.g., zero for x0

= Pseudo-instructions

o Shorthand syntax for common assembly idioms

o E.g., mv rd, rs = addi rd, rs, O
o E.g., li rd, 13 = addi rd, x0, 13
o E.g., nop = addi x0, x0, O

Garcia, Nikoli¢

Berkeley RISCAV (65 QOO

RISC-V
Function Calls

C Functions

main() {

int i,j,k,m; . .
What information must

i = mult(j,k); ... compiler/programmer
m = mult(i,1); ... keep track of?

/* really dumb mult function */

int mult (int mcand, int mlier) {
int product = 0; . .
e hitllel (e R o What ms:tructl.ons can
product = product + mcand; accomplish this?
mlier = mlier -1; }
return product;

}
B k 1 . Garcia, Nikoli¢
Py RISC-V (67) @

g2 Six Fundamental Steps in Calling a Function

1. Putarguments in a place where function can access
them

Transfer control to function
Acquire (local) storage resources needed for function
Perform desired task of the function

v kW N

Put return value in a place where calling code can
access it and restore any registers you used; release
local storage

6. Return control to point of origin, since a function can
be called from several points in a program

Garcia, Nikoli¢
Berkeley RISCY (68) O8O

6ic

RISC-V Function Call Conventions

= Registers faster than memory, so use them

» a0-a7 (x10-x17): eight argument registers
to pass parameters and two return values
(a0-al)

" ra:one return address register to return to
the point of origin (x1)

= Also s0-sl (x8-x%x9)and s2-s11
(x18-x27): saved registers (more about
those later)

Garcia, Nikoli¢

Berkeley NO— QOO

sic: Instruction Support for Functions (1/4)

sum(a,b);... /* a,b:s0,sl1l */

}

J int sum(int x, int y) {
return x+y;
}
address (shown in decimal)

1000

1004 In RISC-V, all instructions are 4 bytes,
>. 1008 and stored in memory just like data.
b,) 1012 So, here we show the addresses of
o 1016 where the programs are stored.

2000

Garcia, Nikoli¢

Berkeley 2004 RISCV (70) QOO

Instruction Support for Functions (2/4)

sum(a,b);... /* a,b:s0,sl1 */
}
Q int sum(int x, int y) {
return x+y;
}
address (shown in decimal)
1000 mv a0, s0 # x = a
1004 mv al,sl # vy =b
=~ 1008 addi ra,zero,1016 #ra=1016
3 1012 5 sum #jump to sum
o 1016 .. # next inst.

2000 sum: add a0,a0,al
2 0 0 4 Garcia, Nikoli¢
Berkeley RISCY (71 O8O

sic: Instruction Support for Functions (3/4)

. sum(a,b);... /* a,b:s0,s1 */
}
@) int sum(int x, int y) {
return x+y;

}
e Question: Why use jr here? Why not use j?

* Answer: sum might be called by many places, so
we can’t return to a fixed place. The calling proc
to sum must be able to say “return here”

somehow.
2000 sum: add aO,aO,alJ

B k 1 2 0 4 a, Nikoli¢
UUUUU CLRECY RISC-V (72) @@@@

RISC-V

6ic

Instruction Support for Functions (4/4)

= Single instruction to jump and save return address:
jump and link (§al)

1008 addi ra,zero,1016 # ra=1016

1012 j sum # goto sum

1008 jal sum # ra=1012,goto sum
= Why have a jal?

o Make the common case fast: function calls very common

o Reduce program size
= Don’t have to know where code is in memory with jal!

Garcia, Nikol

NNNNNNNNNNNNNNNNNNNNNN RISC-V (73) l

i¢

RISC-V Function Call Instructions

= |nvoke function: jump and link instruction (jal)

(really should be 1aj “link and jump”)

o “link” means form an address or link that points to
calling site to allow function to return to proper address

o Jumps to address and simultaneously saves the address of the
following instruction in register ra

jal FunctionLabel
= Return from function: jump register instruction (jx)

= Unconditional jump to address specified in register: Jjr ra

s Assembler shorthand: ret = jr ra

Garcia, Nikoli¢

Berkeley RISCV (74 QOO

sic: Summary of Instruction Support

Actually, only two instructions:
* jal rd, Label —jump-and-link

* jalr rd, rs, imm - jump-and-link register

j, Jjr and ret are pseudoinstructions!
= 3 jal x0, Label

Garcia, Nikoli¢
Berkeley RISCV (75)

