
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikolić

RISC-V Assembly Language

RISC-V (77)

Garcia, Nikoli�

1. Put arguments in a place (registers) where function can

access them

2. Transfer control to function (jal)

3. Acquire (local) storage resources needed for function

4. Perform desired task of the function

5. Put return value in a place where calling code can

access it and restore any registers you used; release

local storage

6. Return control to point of origin, since a function can be

called from several points in a program (ret)

Review: Six Basic Steps in Calling a Function

RISC-V (78)

Garcia, Nikoli�

int Leaf

(int g, int h, int i, int j)

{

int f;

f = (g + h) – (i + j);

return f;

}

§ Parameter variables g, h, i, and j in argument

registers a0, a1, a2, and a3, and f in s0

§ Assume need one temporary register s1

Function Call Example

RISC-V (79)

Garcia, Nikoli�

§ Need a place to save old values before calling function,

restore them when return, and delete

§ Ideal is stack: last-in-first-out (LIFO) queue

(e.g., stack of plates)

ú Push: placing data onto stack

ú Pop: removing data from stack

§ Stack in memory, so need register to point to it

§ sp is the stack pointer in RISC-V (x2)

§ Convention is grow stack down from high to low

addresses

ú Push decrements sp, Pop increments sp

Where Are Old Register Values Saved
to Restore Them After Function Call?

RISC-V (80)

Garcia, Nikoli�

§ Stack frame includes:

ú Return “instruction” address

ú Parameters (arguments)

ú Space for other local variables

§ Stack frames contiguous

blocks of memory; stack pointer

tells where bottom of stack frame is

§ When procedure ends,

stack frame is tossed off the stack;

frees memory for future stack frames

Stack

frame

frame

frame

frame

$sp

0xFFFFFFF0

RISC-V (81)

Garcia, Nikoli�

int Leaf

(int g, int h, int i, int j)

{

int f;

f = (g + h) – (i + j);

return f;

}

§ Parameter variables g, h, i, and j in argument

registers a0, a1, a2, and a3, and f in s0

§ Assume need one temporary register s1

Reminder: Leaf

RISC-V (82)

Garcia, Nikoli�

RISC-V Code for Leaf()

Leaf: addi sp,sp,-8 # adjust stack for 2 items

sw s1, 4(sp) # save s1 for use afterwards

sw s0, 0(sp) # save s0 for use afterwards

add s0,a0,a1 # f = g + h

add s1,a2,a3 # s1 = i + j

sub a0,s0,s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller

lw s1, 4(sp) # restore register s1 for caller

addi sp,sp,8 # adjust stack to delete 2 items

jr ra # jump back to calling routine

RISC-V (83)

Garcia, Nikoli�

§ Need to save old values of s0 and s1

Stack Before, During, After Function

sp

Before call

sp

Saved s1

During call

Saved s0

sp

After call

Saved s1

Saved s0

RISC-V (85)

Garcia, Nikoli�

§ Would clobber values in a0-a7 and ra

§ What is the solution?

What If a Function Calls a Function? Recursive Function Calls?

RISC-V (86)

Garcia, Nikoli�

int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

§ Something called sumSquare, now

sumSquare is calling mult

§ So there’s a value in ra that sumSquare

wants to jump back to, but this will be

overwritten by the call to mult

Nested Procedures

Need to save sumSquare return address
before call to mult – again, use stack

RISC-V (87)

Garcia, Nikoli�

§ CalleR: the calling function

§ CalleE: the function being called

§ When callee returns from executing, the caller

needs to know which registers may have

changed and which are guaranteed to be

unchanged.

§ Register Conventions: A set of generally

accepted rules as to which registers will be

unchanged after a procedure call (jal) and

which may be changed.

Register Conventions (1/2)

RISC-V (88)

Garcia, Nikoli�

To reduce expensive loads and stores from spilling and

restoring registers, RISC-V function-calling

convention divides registers into two categories:

1. Preserved across function call

ú Caller can rely on values being unchanged

ú sp, gp, tp,

“saved registers” s0- s11 (s0 is also fp)

2. Not preserved across function call

ú Caller cannot rely on values being unchanged

ú Argument/return registers a0-a7,ra,

“temporary registers” t0-t6

Register Conventions (2/2)

RISC-V (89)

Garcia, Nikoli�

RISC-V Symbolic Register Names
Register ABI Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5 t0 Temporary/Alternate link register Caller

x6-7 t1-2 Temporaries Caller

x8 s0/fp Saved register/Frame pointer Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function arguments/Return values Caller

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

Human-friendly symbolic names in assembly code

Numbers hardware

understands

RISC-V (91)

Garcia, Nikoli�

§ C has two storage classes: automatic and static

ú Automatic variables are local to function and discarded

when function exits

ú Static variables exist across exits from and entries to

procedures

§ Use stack for automatic (local) variables that

don’t fit in registers

§ Procedure frame or activation record: segment

of stack with saved registers and local variables

Allocating Space on Stack

RISC-V (92)

Garcia, Nikoli�

Stack Before, During, After Function

sp

Before call

sp

During call

Saved argument

registers (if any)

Saved return

address (if needed)

Saved saved

registers (if any)

Local variables

(if any)

sp

After call

RISC-V (93)

Garcia, Nikoli�

§ Recall - sp always points to the last used space in

the stack

§ To use stack, we decrement this pointer by the

amount of space we need and then fill it with info

§ So, how do we compile this?

int sumSquare(int x, int y) {

return mult(x,x)+ y;

}

Using the Stack (1/2)

RISC-V (94)

Garcia, Nikoli�

Using the Stack (2/2)

sumSquare:

addi sp,sp,-8 # space on stack

sw ra, 4(sp) # save ret addr

sw a1, 0(sp) # save y

mv a1,a0 # mult(x,x)

jal mult # call mult

lw a1, 0(sp) # restore y

add a0,a0,a1 # mult()+y

lw ra, 4(sp) # get ret addr

addi sp,sp,8 # restore stack

jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

RISC-V (95)

Garcia, Nikoli�

§ When a C program is run, there are three

important memory areas allocated:

ú Static: Variables declared once per program, cease to

exist only after execution completes - e.g., C globals

ú Heap: Variables declared dynamically via malloc

ú Stack: Space to be used by procedure during execution;

this is where we can save register values

Memory Allocation

RISC-V (96)

Garcia, Nikoli�

Where is the Stack in Memory?
§ RV32 convention (RV64/RV128 have different memory layouts)

§ Stack starts in high memory and grows down

ú Hexadecimal: bfff_fff0hex

ú Stack must be aligned on 16-byte boundary

(not true in previous examples)

§ RV32 programs (text segment) in low end

ú 0001_0000hex

§ static data segment (constants and other static variables) above text

for static variables

ú RISC-V convention global pointer (gp) points to static

ú RV32 gp = 1000_0000hex

§ Heap above static for data structures that grow and shrink ; grows

up to high addresses

RISC-V (97)

Garcia, Nikoli�

RV32 Memory Allocation

Stack

Dynamic data

Static data

Text

Reserved

Sp = bfff fff0hex

1000 0000hex

pc = 0001 0000hex

0

Introduction (99)

Garcia, Nikolić

§ Arithmetic/logic
add rd, rs1, rs2
sub rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2
xor rd, rs1, rs2
sll rd, rs1, rs2
srl rd, rs1, rs2
sra rd, rs1, rs2

§ Immediate
addi rd, rs1, imm
subi rd, rs1, imm
andi rd, rs1, imm
ori rd, rs1, imm
xori rd, rs1, imm
slli rd, rs1, imm
srli rd, rs1, imm
srai rd, rs1, imm

§ Load/store
lw rd, rs1, imm
lb rd, rs1, imm
lbu rd, rs1, imm
sw rs1, rs2, imm
sb rs1, rs2, imm

§ Branching/jumps

beq rs1, rs2, Label

bne rs1, rs2, Label

bge rs1, rs2, Label

blt rs1, rs2, Label

bgeu rs1, rs2, Label
bltu rs1, rs2, Label

jal rd, Label

jalr rd, rs, imm

RV32 So Far…

RISC-V (100)

Garcia, Nikoli�

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Compiler

Assembler

Hardware Architecture Description
(e.g., block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw x3, 0(x10)
lw x4, 4(x10)
sw x4, 0(x10)
sw x3, 4(x10)

1000 1101 1110 0010 0000 0000 0000 0000
1000 1110 0001 0000 0000 0000 0000 0100

1010 1110 0001 0010 0000 0000 0000 0000
1010 1101 1110 0010 0000 0000 0000 0100

Out = AB+CD

A

B

C

D

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg []

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

wb

Anything can be represented

as a number,
i.e., data or instructions

