Great Ideas

[]
n
UC Berkeley ° UC Berkeley
Teaching Professor Compt’ter ArCh'teCture Professor
Dan Garcia (a.k.a. Machine Structures) Bora Nikoli¢

RISC-V Instruction Representation

Garcia, Nikolic

1«%&%1&%1.?)7 csb6lc.org @

ABREAAEA

(PR RN
sssEw

sFreEw

Great Idea #1: Abstraction
_(Levels of Representation/interpretation)

i temp =
High Level Language SR = vlk#il:
Program (e.g., C) v[k+l] = temp;

10) Anything can be represented

1w x3, 0(x
Assembly Language 1w x4, 4(x10) as a number,
Program (e.g., RISC-V) Sw ig: 2&%8; i.e., data or instructions
. 1000 1101 1110 0010 0000 0000 0000 0000
Machine Language 1000 1110 0001 0000 0000 0000 0000 0100
Program (RISC-V) 1010 1110 0001 0010 0000 0000 0000 0000
1010 1101 1110 0010 0000 0000 0000 0100

Hardware Architecture Description
(e.g., block diagrams)

imm[31:0]

Logic Circuit Description

(Circuit Schematic Diagrams)

Out = AB+CD

Garcia, Nikoli¢

Berkeley — O8O

- Garcia, Nikoli¢
Berkeley RISCY (3) OO

sic: Big Idea: Stored-Program Computer

= |nstructions are represented as bit patterns
— can think of these as numbers

= Therefore, entire programs can be stored in
memory to be read or written just like data

. Can reprogram qU|Ck|y (SecondS)’ First Draft of a Report on the EDVAC
) . By John von Neumann
don’t have to rewire computer (days) Contract No. W-670-ORD-4926
Between the
United S A Ord D
= Known as the “von Neumann” T At oroen
. R . University of Pennsylvania
com pute IS after Wldely d|Str|buted Moore School of Electrical Engineering
) University of Pennsylvania
tech report on EDVAC project June 30, 1945

o Wrote-up discussions of Eckert and Mauchly
o Anticipated earlier by Turing and Zuse

Garcia, Nikoli¢

Berkeley — QOO

EDSAC (Cambridge, 1949):
First General Stored-Program Electronic Computer

-

araoms held as numbers i ‘*‘17"5"':.

Iement ----w'ﬂx

r|-'|lllll
L !";mzm

J TRl LL Jq_‘l'?_ﬁ._!_" n ”1_
l._l_ltr-nl!!u_‘___!;l_:_ g 2= i) 1 LR (KD ‘_‘_.' % !
(NNNINEEY |0 S ur r'

FAETS ; L _ TS]_'ll I.I.I-I-I.Iill.l ﬂ

e :'f'; i';h- LA 4 !E
b T R e T . 1 R R ®’
-.___"‘-! !--————-—- t mm ae
1-1 Ill‘ll ‘ I | !

) e - - _ Garcia, Nikoli¢
ﬁgl-;lsglsy RISCY (5) O8O

Consequence #1: Everything Has a Memory Address

= Since all instructions and data are stored
in memory, everything has a memory
address: instructions, data words

o Both branches and jumps use these

= C pointers are just memory addresses:
they can point to anything in memory
o Unconstrained use of addresses can lead to
nasty bugs; avoiding errors up to you in C;
limited in Java by language design

= One register keeps address of instruction L s
being executed: “Program Counter” (PC)
o Basically a pointer to memory
o Intel calls it Instruction Pointer (IP) -

Berkeley — OSO

NC 8A

sic: Consequence #2: Binary Compatibility

* Programs are distributed in binary form
o Programs bound to specific instruction set

o Different version for phones and PCs

= New machines want to run old programs
(“binaries”) as well as programs compiled to new
instructions

= Leads to “backward-compatible” instruction set
evolving over time

= Selection of Intel 8088 in 1981 for 15t IBM PC is
major reason latest PCs still use 80x86 instruction
set; could still run program from 1981 PC today S

Berkeley — QOO

nnnnn

Instructions as Numbers (1/2)

sFreEw

= Most data we work with is in words (32-bit
chunks):
o Each register is a word
o 1w and sw both access memory one word at a time

= So how do we represent instructions?

o Remember: Computer only understands 1s and Os,
so assembler string “add x10,x11,x0”is
meaningless to hardware

o RISC-V seeks simplicity: since data is in words, make
instructions be fixed-size 32-bit words also

= Same 32-bit instructions used for RV32, RV64,
RV128

Garcia, Nikoli¢
Berkeley RISCY (8) O8O

sic: Instructions as Numbers (2/2)

= One word is 32 bits, so divide instruction word into
“fields”

= Each field tells processor something about
instruction

= We could define different fields for each instruction,
but RISC-V seeks simplicity, so define six basic types
of instruction formats:

o R-format for register-register arithmetic operations

o |-format for register-immediate arithmetic operations and loads
o S-format for stores

o B-format for branches (minor variant of S-format)

o U-format for 20-bit upper immediate instructions

o J-format for jumps (minor variant of U-format)

Garcia, Nikoli¢

Berkeley — QOO

R-Format
Layout

sic: R-Format Instruction Layout

Field’s bi$ positions
31

2524 2019 1514 1211 76
| funct? rs2 rsl funct3
7 5

0
opcode |

5

Name of field 1‘
Number of bits in field

32-bit instruction word divided into six fields of
varying numbers of bits each: 7+5+5+3+5+7 = 32
= Examples

[m}

opcode is a 7-bit field that lives in bits 6-0 of the instruction
rs2 is a 5-bit field that lives in bits 24-20 of the instruction

[m}

Garcia, Nikoli¢
Berkeley RISCY) QOO

6ic

R-Format Instructions opcode/funct Fields

31 2524 2019 1514 1211 76 0

| funct7? rs2 rsl funct3 rd opcode |
7 5 5 3 5 7

» opcode: partially specifies what instruction it is

o Note: This field is equal to 0110011, _ for all R-Format
register-register arithmetic instructions

= funct7+funct3: combined with opcode, these two
fields describe what operation to perform

= Question: You have been professing simplicity, so why
aren’t opcode and funct7 and funct3 a single 17-
bit field?

o We’ll answer this later

Garcia, Nikoli¢

Berkeley S O8O

IIIIIIIIIIIIIIIIIIIIII

sic: R-Format Instructions Register Specifiers

31 25 24 20 19 1514 12 11 76 0
| funct7 rs2 rsl funct3 rd opcode |

7 5 5 3 5 7

= rsl (Source Register #1): specifies register containing first
operand

» rs2 :specifies second register operand

= rd (Destination Register): specifies register which will
receive result of computation

= Each register field holds a 5-bit unsigned integer (0-31)
corresponding to a register number (x0-x31)

Garcia, Nikoli¢

Berkeley RISCV (13) QOO

sic: R-Format Example

= RISC-V Assembly Instruction:
add x18,x19,x10

31 2524 2019 1514 1211 76 0
rfunct7_|- rs2 rsl funct3_|_ rd opcode |
7 5 5 3 5 7

31 25 24 2019 1514 1211 76
| 0000000 01010 10011 000 10010 0110011
7 5 5 3 5 7

add rs2=10 rsl=19 add rd=18 Reg-Reg OP

Garcia, Nikoli¢

Berkeley RISCY (14 QOO

sic: Your Turn
= What is correct encoding of add x4, x3, x2°7?

1) 4021 8233, ,
2) 0021 82b3,
3) 4021 82b3,
4) 0021 8233,
)

5) 0021 8234, _,
31 25 24 20 19 15 14 12 11 7 6 0

0000000 0110011 | add

0100000 —-m-z- 0110011 | sub
0000000 rs2 | rsi | 100 | =rd]0110011| xor

or
0000000 111 0110011 | and

Garcia, Nikoli¢

Berkeley RISCY (15) (OO

IIIIIIIIIIIIIIIIIIIIII

sic: All RVv32 R-format Instructions

0000000 rs2 rsl 000 rd 0110011 add
0100000 rs2 rsl 000 rd 0110011 sub

0000000 | rs2 | rs1 | 001 | =rd |o110011| sl1
0000000 0110011 | slt
0000000 0110011 | sltu
0000000 0110011 | xor
0000000 0110011 | srl
0100000 | rs2 | rsi | 101 | rd | o110011| sra
0000000 ---“ 0110011 | or

0000000 rsl 1111 rd 0110011 and

u ~
Different encoding in funct7 + funct3 selects different operations
Can you spot two new instructions?

Garcia, Nikoli¢
Berkeley RISCY (16) QOO

I-Format
Layout

sic: |-Format Instructions

= What about instructions with immediates?

o Compare:
add rd, rsl, rs2
addi rd, rsl, imm

o 5-bit field only represents numbers up to the value 31:
immediates may be much larger than this

o |deally, RISC-V would have only one instruction format
(for simplicity): unfortunately, we need to compromise

= Define new instruction format that is mostly

consistent with R-format
o Notice if instruction has immediate, then uses at most 2
registers (one source, one destination)

Garcia, Nikoli¢

Berkeley RISCY (18) (OO

IIIIIIIIIIIIIIIIIIIIII

sic: I-Format Instruction Layout

31 25 24 20 19 15 14 12 11 76 0
| funchim[]1:9832 rsl funct3 rd opcode |
7 12 5 5 3 5 7

= Only one field is different from R-format, rs2 and
funct7 replaced by 12-bit sighed immediate,

imm[11:0]

= Remaining fields (rs1, funct3, rd, opcode) same as
before

= imm[11:0] can hold valuesin range
[-2048,,, , +2047,]

= |Immediate is always sign-extended to 32-bits before use
in an arithmetic operation

= \We'll later see how to handle immediates > 12 bits

Garcia, Nikoli¢

Berkeley RISCY (19 QOO

I-FFormat Example

= RISC-V Assembly Instruction:
addi x15,x1,-50

31 2019 1514 1211 76 0
r imm[11:0] | rsl | funct3 | rd opcode -I
12 5 3 5 7

111111001110 | 00001 | o000 | 01111 | 0010011

imm=-50 rsl=1 add rd=15 OP-Imm

Garcia, Nikoli¢

Berkeley RISC-V (20) QOO

sic: All RV32 I-format Arithmetic Instructions

imm[11:0] rsl 000 rd 0010011 | addi

imm[11:0] 0010011 | slti
imm[11:0] 0010011 | sltiu
imm[11:0] 0010011 | xori
imm[11:0]] rs1i | 110 | rd Joo10011] ori
imm[11:0] --- 0010011 | andi
0000000 -- 0010011 | s11i

00100000 | shamt | rsl 101 0010011 | srli
0000 | shamt | rs1 | 101 | =d Joo10011| srai

One of the higher-order immediate bits “Shift-by-immediate” instructions only use
is used to distinguish “shift right lower 5 bits of the immediate value for shift
logical” (SRLI) from “shift right amount (can only shift by 0-31 bit positions)

arlthmeth (SRAI) Garcia, Nikoli¢

Berkeley S QOO

RISC-V Loads

Load Instructions are also I-Type

31 2019 1514 1211 76 0
| imm[11:0] rsl funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD

= The 12-bit signed immediate is added to the

base address in register rs1 to form the
memory address

o This is very similar to the add-immediate operation
but used to create address not to create final result

= The value loaded from memory is stored in
register rd

Garcia, Nikoli¢
uuuuuuuuuuuuuuuuuuuuuu

RISC-V (23) .

6ic

I-FFormat Load Example

= RISC-V Assembly Instruction:
1w x14, 8 (x2)

31 2019 1514 1211 76 0
| imm[11:0] rsl funct3 rd opcode |
12 5 3 5 7
offset[11:0] base width dest LOAD

000000001000 | 00010 | o010 I 01110 | 0000011

imm=+8 rsl=2 lw rd=14 LOAD

(load word)

Garcia, Nikoli¢

Berkeley RISCY (24 QOO

sic: All RV32 Load Instructions

1b
1h
1w

lbu
0000011 | 1hu

= 1lbuis “load unsigned byte” funct3 field encodes size and
‘'signedness’ of load data

= 1lhis “load halfword”, which loads 16 bits (2 bytes) and sign-
extends to fill destination 32-bit register

0000011

= lhuis “load unsigned halfword”, which zero-extends 16 bits to fill
destination 32-bit register

= There is no ‘lwu’ in RV32, because there is no sign/zero extension
needed when copying 32 bits from a memory location into a
32- bit register Garcia, Nikoli¢

Berkeley RISCY (25) QOO

S-Format
Layout

sic: S-Format Used for Stores

31 2524 2019 1514 1211 76 0]
I Imm[11:5] rs2 rsl funct3 | imm[4:0]| opcode |
7 5 5 3 5 7

offset[11:5] src base width offset[4:0] STORE

= Store needs to read two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

= Can’t have both rs2 and immediate in same place as other
instructions!

= Note that stores don’t write a value to the register file, no rd!

= RISC-V design decision is to move low 5 bits of immediate to
where rd field was in other instructions — keep rsl/rs2 fields in
same place

o Register names more critical than immediate bits in hardware design

Garcia, Nikoli¢
Berkeley RISCY (27) O8O

6ic

S-Format Example

= RISC-V Assembly Instruction:
sw x14, 8 (x2)

31 2524 2019 1514 1211 76 0
IImm|11:5| rs2 rsl funct3 |imm[4:0 oEcode I
7 5 5 3 5 7

offset[11:5] src

base width offset[4:0] STORE

0000000 | 01110 | ooozo | 010 | o1o0o | ozoo01z

offset[11:5]

offset[4:0]

0000000

01000 |combined 12-bit offset =8

IIIIIIIIIIIIIIIIIIIIII

Garcia, Nikoli¢

RISC-V (28) .

All RV32 Store Instructions

» Store byte, halfword, word

Imm[11:5] | rs2 rsl 000 | imm[4:0] | 0100011 | sb
Imm[11:5] rs2 rsl 001 imm[4:0] | 0100011 sh
[Imm[11:5] | rs2 | rs1 | 010 | imm[4:0] | 0100011 | ..

width

Garcia, Nikoli¢

Berkeley RISCY (29) QOO

	RISC-V Instruction Representation
	Great Idea #1: Abstraction�(Levels of Representation/Interpretation)
	ENIAC (U.Penn., 1946)�First Electronic General-Purpose Computer
	Big Idea: Stored-Program Computer
	EDSAC (Cambridge, 1949):�First General Stored-Program Electronic Computer
	Consequence #1: Everything Has a Memory Address
	Consequence #2: Binary Compatibility
	Instructions as Numbers (1/2)
	Instructions as Numbers (2/2)
	Slide Number 10
	R-Format Instruction Layout
	R-Format Instructions opcode/funct Fields
	R-Format Instructions Register Specifiers
	R-Format Example
	Your Turn
	All RV32 R-format Instructions
	Slide Number 17
	I-Format Instructions
	I-Format Instruction Layout
	I-Format Example
	All RV32 I-format Arithmetic Instructions
	Slide Number 22
	Load Instructions are also I-Type
	I-Format Load Example
	All RV32 Load Instructions
	Slide Number 26
	S-Format Used for Stores
	S-Format Example
	All RV32 Store Instructions

