
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikolić

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikolić

RISC-V Instruction Representation

RISC-V (2)

Garcia, Nikolić

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Compiler

Assembler

Hardware Architecture Description
(e.g., block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw x3, 0(x10)
lw x4, 4(x10)
sw x4, 0(x10)
sw x3, 4(x10)

1000 1101 1110 0010 0000 0000 0000 0000

1000 1110 0001 0000 0000 0000 0000 0100

1010 1110 0001 0010 0000 0000 0000 0000

1010 1101 1110 0010 0000 0000 0000 0100

Out = AB+CD

A

B

C

D

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg []

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

wb

Anything can be represented

as a number,

i.e., data or instructions

RISC-V (3)

Garcia, Nikolić

ENIAC (U.Penn., 1946)
First Electronic General-Purpose Computer

3

Blazingly fast (multiply in 2.8ms!)

10 decimal digits x 10 decimal digits

But needed 2-3 days to setup new program,

as programmed with patch cords and switches

RISC-V (4)

Garcia, Nikolić

Big Idea: Stored-Program Computer
 Instructions are represented as bit patterns

– can think of these as numbers

 Therefore, entire programs can be stored in

memory to be read or written just like data

 Can reprogram quickly (seconds),

don’t have to rewire computer (days)

 Known as the “von Neumann”

computers after widely distributed

tech report on EDVAC project

 Wrote-up discussions of Eckert and Mauchly

 Anticipated earlier by Turing and Zuse

First Draft of a Report on the EDVAC

By John von Neumann

Contract No. W–670–ORD–4926

Between the

United States Army Ordnance Department

and the

University of Pennsylvania

Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

RISC-V (5)

Garcia, Nikolić

Programs held as numbers in memory

35-bit binary 2’s complement words

EDSAC (Cambridge, 1949):
First General Stored-Program Electronic Computer

RISC-V (6)

Garcia, Nikolić

 Since all instructions and data are stored

in memory, everything has a memory

address: instructions, data words

 Both branches and jumps use these

 C pointers are just memory addresses:

they can point to anything in memory

 Unconstrained use of addresses can lead to

nasty bugs; avoiding errors up to you in C;

limited in Java by language design

 One register keeps address of instruction

being executed: “Program Counter” (PC)

 Basically a pointer to memory

 Intel calls it Instruction Pointer (IP)

Consequence #1: Everything Has a Memory Address

IBM 701, 1953

(Image source: Wikipedia)

RISC-V (7)

Garcia, Nikolić

Consequence #2: Binary Compatibility

 Programs are distributed in binary form

 Programs bound to specific instruction set

 Different version for phones and PCs

 New machines want to run old programs

(“binaries”) as well as programs compiled to new

instructions

 Leads to “backward-compatible” instruction set

evolving over time

 Selection of Intel 8088 in 1981 for 1st IBM PC is

major reason latest PCs still use 80x86 instruction

set; could still run program from 1981 PC today

RISC-V (8)

Garcia, Nikolić

 Most data we work with is in words (32-bit
chunks):

 Each register is a word

 lw and sw both access memory one word at a time

 So how do we represent instructions?

 Remember: Computer only understands 1s and 0s,
so assembler string “add x10,x11,x0” is
meaningless to hardware

 RISC-V seeks simplicity: since data is in words, make
instructions be fixed-size 32-bit words also

 Same 32-bit instructions used for RV32, RV64,
RV128

Instructions as Numbers (1/2)

RISC-V (9)

Garcia, Nikolić

 One word is 32 bits, so divide instruction word into
“fields”

 Each field tells processor something about
instruction

 We could define different fields for each instruction,
but RISC-V seeks simplicity, so define six basic types
of instruction formats:
 R-format for register-register arithmetic operations

 I-format for register-immediate arithmetic operations and loads

 S-format for stores

 B-format for branches (minor variant of S-format)

 U-format for 20-bit upper immediate instructions

 J-format for jumps (minor variant of U-format)

Instructions as Numbers (2/2)

RISC-V (11)

Garcia, Nikolić

 32-bit instruction word divided into six fields of

varying numbers of bits each: 7+5+5+3+5+7 = 32

 Examples

 opcode is a 7-bit field that lives in bits 6-0 of the instruction

 rs2 is a 5-bit field that lives in bits 24-20 of the instruction

R-Format Instruction Layout
Field’s bit positions

Number of bits in field
Name of field

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

RISC-V (12)

Garcia, Nikolić

 opcode: partially specifies what instruction it is

 Note: This field is equal to 0110011
two

for all R-Format

register-register arithmetic instructions

 funct7+funct3: combined with opcode, these two

fields describe what operation to perform

 Question: You have been professing simplicity, so why

aren’t opcode and funct7 and funct3 a single 17-

bit field?

 We’ll answer this later

R-Format Instructions opcode/funct Fields

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

RISC-V (13)

Garcia, Nikolić

 rs1 (Source Register #1): specifies register containing first

operand

 rs2 : specifies second register operand

 rd (Destination Register): specifies register which will

receive result of computation

 Each register field holds a 5-bit unsigned integer (0-31)

corresponding to a register number (x0-x31)

R-Format Instructions Register Specifiers

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

RISC-V (14)

Garcia, Nikolić

 RISC-V Assembly Instruction:

add x18,x19,x10

R-Format Example

Reg-Reg OPrd=18addadd rs2=10 rs1=19

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

0000000 01010 10011 000 10010 0110011

RISC-V (15)

Garcia, Nikolić

 What is correct encoding of add x4, x3, x2 ?

1) 4021 8233hex

2) 0021 82b3hex

3) 4021 82b3hex

4) 0021 8233hex

5) 0021 8234hex

Your Turn

0000000 rs2 rs1 000 rd 0110011

0100000 rs2 rs1 000 rd 0110011

add

sub

0000000 rs2 rs1 100 rd 0110011 xor

0000000 rs2 rs1 110 rd 0110011

0000000 rs2 rs1 111 rd 0110011

or

and

31 25 20 15 71224 19 14 11 6 0

RISC-V (16)

Garcia, Nikolić

All RV32 R-format Instructions

Different encoding in funct7 + funct3 selects different operations

0000000 rs2 rs1 000 rd 0110011

0100000 rs2 rs1 000 rd 0110011

0000000 rs2 rs1 001 rd 0110011

add

sub

sll

0000000 rs2 rs1 010 rd 0110011 slt

0000000 rs2 rs1 011 rd 0110011 sltu

0000000 rs2 rs1 100 rd 0110011 xor

0000000 rs2 rs1 101 rd 0110011 srl

0100000 rs2 rs1 101 rd 0110011 sra

0000000 rs2 rs1 110 rd 0110011

0000000 rs2 rs1 111 rd 0110011

or

and

Can you spot two new instructions?

RISC-V (18)

Garcia, Nikolić

 What about instructions with immediates?

 Compare:

 add rd, rs1, rs2

 addi rd, rs1, imm

 5-bit field only represents numbers up to the value 31:
immediates may be much larger than this

 Ideally, RISC-V would have only one instruction format
(for simplicity): unfortunately, we need to compromise

 Define new instruction format that is mostly
consistent with R-format

 Notice if instruction has immediate, then uses at most 2
registers (one source, one destination)

I-Format Instructions

RISC-V (19)

Garcia, Nikolić

 Only one field is different from R-format, rs2 and
funct7 replaced by 12-bit signed immediate,
imm[11:0]

 Remaining fields (rs1, funct3, rd, opcode) same as
before

 imm[11:0] can hold values in range
[-2048ten , +2047ten]

 Immediate is always sign-extended to 32-bits before use
in an arithmetic operation

 We’ll later see how to handle immediates > 12 bits

I-Format Instruction Layout

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcodeimm[11:0]

12

RISC-V (20)

Garcia, Nikolić

 RISC-V Assembly Instruction:

addi x15,x1,-50

I-Format Example

111111001110 00001 000 01111 0010011

OP-Immrd=15addimm=-50 rs1=1

5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

12

RISC-V (21)

Garcia, Nikolić

All RV32 I-format Arithmetic Instructions

“Shift-by-immediate” instructions only use

lower 5 bits of the immediate value for shift

amount (can only shift by 0-31 bit positions)

One of the higher-order immediate bits

is used to distinguish “shift right

logical” (SRLI) from “shift right

arithmetic” (SRAI)

imm[11:0] rs1 000 rd 0010011

imm[11:0] rs1 010 rd 0010011

imm[11:0] rs1 011 rd 0010011

addi

slti

sltiu

imm[11:0] rs1 100 rd 0010011 xori

imm[11:0] rs1 110 rd 0010011 ori

imm[11:0] rs1 111 rd 0010011 andi

0000000 shamt rs1 001 rd 0010011 slli

0000000 shamt rs1 101 rd 0010011 srli

0100000 shamt rs1 101 rd 0010011 srai

RISC-V (23)

Garcia, Nikolić

 The 12-bit signed immediate is added to the
base address in register rs1 to form the
memory address

 This is very similar to the add-immediate operation
but used to create address not to create final result

 The value loaded from memory is stored in
register rd

Load Instructions are also I-Type

offset[11:0] base width dest LOAD

5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

12

RISC-V (24)

Garcia, Nikolić

 RISC-V Assembly Instruction:

lw x14, 8(x2)

I-Format Load Example

000000001000 00010 010 01110 0000011

LOADrd=14lwimm=+8 rs1=2

(load word)

offset[11:0] base width dest LOAD

5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

12

RISC-V (25)

Garcia, Nikolić

 lbu is “load unsigned byte”

 lh is “load halfword”, which loads 16 bits (2 bytes) and sign-

extends to fill destination 32-bit register

 lhu is “load unsigned halfword”, which zero-extends 16 bits to fill

destination 32-bit register

 There is no ‘lwu’ in RV32, because there is no sign/zero extension

needed when copying 32 bits from a memory location into a

32- bit register

All RV32 Load Instructions

funct3 field encodes size and

‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011

imm[11:0] rs1 001 rd 0000011

imm[11:0] rs1 010 rd 0000011

lb

lh

lw

imm[11:0] rs1 100 rd 0000011 lbu

imm[11:0] rs1 101 rd 0000011 lhu

RISC-V (27)

Garcia, Nikolić

 Store needs to read two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

 Can’t have both rs2 and immediate in same place as other
instructions!

 Note that stores don’t write a value to the register file, no rd!

 RISC-V design decision is to move low 5 bits of immediate to
where rd field was in other instructions – keep rs1/rs2 fields in
same place

 Register names more critical than immediate bits in hardware design

S-Format Used for Stores

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

RISC-V (28)

Garcia, Nikolić

 RISC-V Assembly Instruction:

sw x14, 8(x2)

S-Format Example

0000000 01110 00010 010 01000 0100011

STORE
offset[4:0]

=8SW

offset[11:5]

=0 rs2=14 rs1=2

combined 12-bit offset = 80000000 01000

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

RISC-V (29)

Garcia, Nikolić

• Store byte, halfword, word

All RV32 Store Instructions

Imm[11:5] rs2 rs1 000 imm[4:0] 0100011 sb

sh

sw

Imm[11:5] rs2 rs1 001 imm[4:0] 0100011

Imm[11:5] rs2 rs1 010 imm[4:0] 0100011

width

	RISC-V Instruction Representation
	Great Idea #1: Abstraction�(Levels of Representation/Interpretation)
	ENIAC (U.Penn., 1946)�First Electronic General-Purpose Computer
	Big Idea: Stored-Program Computer
	EDSAC (Cambridge, 1949):�First General Stored-Program Electronic Computer
	Consequence #1: Everything Has a Memory Address
	Consequence #2: Binary Compatibility
	Instructions as Numbers (1/2)
	Instructions as Numbers (2/2)
	Slide Number 10
	R-Format Instruction Layout
	R-Format Instructions opcode/funct Fields
	R-Format Instructions Register Specifiers
	R-Format Example
	Your Turn
	All RV32 R-format Instructions
	Slide Number 17
	I-Format Instructions
	I-Format Instruction Layout
	I-Format Example
	All RV32 I-format Arithmetic Instructions
	Slide Number 22
	Load Instructions are also I-Type
	I-Format Load Example
	All RV32 Load Instructions
	Slide Number 26
	S-Format Used for Stores
	S-Format Example
	All RV32 Store Instructions

