
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Running a Program – CALL

(Compiling, Assembling, Linking,

and Loading)

Compiling, Assembling, Linking, and Loading (3)

Garcia, Nikoli�

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Compiler

Assembler

Hardware Architecture Description
(e.g., block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw x3, 0(x10)
lw x4, 4(x10)
sw x4, 0(x10)
sw x3, 4(x10)

1000 1101 1110 0010 0000 0000 0000 0000

1000 1110 0001 0000 0000 0000 0000 0100

1010 1110 0001 0010 0000 0000 0000 0000

1010 1101 1110 0010 0000 0000 0000 0100

Out = AB+CD

A

B

C

D

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm [31:0]

Reg[rs2]

wb

Compiling, Assembling, Linking, and Loading (4)

Garcia, Nikoli�

Language Execution Continuum
§ Interpreter is a program that executes other

programs

§ Language translation gives us another option

§ When to choose? In general, we
ú interpret a high-level language when efficiency is not

critical
ú translate to a lower-level language to increase

performance

Easy to program

Inefficient to interpret

Difficult to program

Efficient to interpret

Python Java C++ C Assembly Machine code

Java bytecode

Compiling, Assembling, Linking, and Loading (5)

Garcia, Nikoli�

Interpretation vs Translation

§ How do we run a program written in a

source language?

ú Interpreter: Directly executes a program in the
source language

ú Translator: Converts a program from the
source language to an equivalent program in
another language

Compiling, Assembling, Linking, and Loading (6)

Garcia, Nikoli�

Interpretation (1/2)

§ For example, consider a Python program
foo.py

§ Python interpreter is just a program that
reads a python program and performs the
functions of that python program

Compiling, Assembling, Linking, and Loading (7)

Garcia, Nikoli�

§ WHY interpret machine language in
software?

§ E.g., VENUS RISC-V simulator useful for
learning/debugging

§ E.g., Apple Macintosh conversion
ú Switched from Motorola 680x0 ISA to PowerPC

(before x86)
ú Could require all programs to be re-translated

from high level language
ú Instead, let executables contain old and/or new

machine code, interpret old code in software if
necessary (emulation)

Interpretation (2/2)

Compiling, Assembling, Linking, and Loading (8)

Garcia, Nikoli�

Interpretation vs. Translation? (1/2)

§ Generally easier to write interpreter

ú …you did it in CS61A!

§ Interpreter closer to high-level, so can give
better error messages (e.g., VENUS)

ú Translator reaction: add extra information to help
debugging (line numbers, names)

§ Interpreter slower (10x?), code smaller (2x?)

§ Interpreter provides instruction set
independence: run on any machine

Compiling, Assembling, Linking, and Loading (9)

Garcia, Nikoli�

Interpretation vs. Translation? (2/2)
§ Translated/compiled code almost always

more efficient and therefore higher
performance:
ú Important for many applications, particularly

operating systems

§ Translation/compilation helps “hide” the
program “source” from the users:
ú One model for creating value in the marketplace

(e.g., Microsoft keeps all their source code secret)
ú Alternative model, “open source”, creates value

by publishing the source code and fostering a
community of developers.

þ

Compiling, Assembling, Linking, and Loading (11)

Garcia, Nikoli�

Steps in Compiling and Running a C Program

gcc -O2 -S -c foo.c

Compiling, Assembling, Linking, and Loading (12)

Garcia, Nikoli�

Compiler

§ Input: High-Level Language Code (e.g., foo.c)

§ Output: Assembly Language Code
(e.g., foo.s for RISC-V)

§ Note: Output may contain pseudo-instructions

§ Pseudo-instructions: instructions that

assembler understands but not in machine
For example (copy the value from t2 to t1):

ú mv t1,t2è addi t1,t2,0

þ

Compiling, Assembling, Linking, and Loading (14)

Garcia, Nikoli�

Where Are We Now?

CS164

Compiling, Assembling, Linking, and Loading (15)

Garcia, Nikoli�

Assembler

§ Input: Assembly Language Code (includes
pseudo ops)
(e.g., foo.s for RISC-V)

§ Output: Object Code, information tables (true
assembly only)
(e.g., foo.o for RISC-V)

§ Reads and Uses Directives

§ Replace Pseudo-instructions

§ Produce Machine Language

§ Creates Object File

Compiling, Assembling, Linking, and Loading (16)

Garcia, Nikoli�

§ Give directions to assembler, but do not produce
machine instructions
.text: Subsequent items put in user text segment (machine code)

.data: Subsequent items put in user data segment (source file data in binary)

.globl sym: Declares sym global and can be referenced from other files

.string str: Store the string str in memory and null-terminate it

.word w1…wn: Store the n 32-bit quantities in successive memory words

Assembler Directives (See RISCV Reader, Chapter 3)

Compiling, Assembling, Linking, and Loading (17)

Garcia, Nikoli�

§ Assembler treats convenient variations of machine
language instructions as if real instructions

Pseudo: Real:

mv t0, t1 addi t0,t1,0

neg t0, t1 sub t0, zero, t1

li t0, imm addi t0, zero, imm

not t0, t1 xori t0, t1, -1

beqz t0, loop beq t0, zero, loop

la t0, str lui t0, str[31:12]

addi t0, t0, str[11:0] OR

auipc t0, str[31:12]

addi t0, t0, str[11:0]

DON’T FORGET:

sign extended immediates +

Branch imms count halfwords)

STATIC Addressing

PC-Relative Addressing

Pseudo-instruction Replacement

Compiling, Assembling, Linking, and Loading (18)

Garcia, Nikoli�

Producing Machine Language (1/3)

§ Simple Case
ú Arithmetic, Logical, Shifts, and so on

ú All necessary info is within the instruction
already

§ What about Branches and Jumps?
ú PC-Relative (e.g., beq/bne and jal)

ú So once pseudo-instructions are replaced by
real ones, we know by how many instructions
to branch/jump over

§ So these can be handled

Compiling, Assembling, Linking, and Loading (19)

Garcia, Nikoli�

Producing Machine Language (2/3)
§ “Forward Reference” problem

ú Branch instructions can refer to labels that are
“forward” in the program:

ú Solved by taking two passes over the program
 First pass remembers position of labels
 Second pass uses label positions to generate code

addi t2, zero, 9 # t2 = 9

L1: slt t1, zero, t2 # 0 < t2? Set t1

beq t1, zero, L2 # NO! t2 <= 0; Go to L2

addi t2, t2, -1 # YES! t2 > 0; t2--

j L1 # Goto L1

L2:
3 words back

(6 halfwords)

3 words forward

(6 halfwords)

Compiling, Assembling, Linking, and Loading (20)

Garcia, Nikoli�

Producing Machine Language (3/3)
§ What about PC-relative jumps (jal) and

branches (beq, bne)?
ú j offset pseudo instruction expands to
jal zero, offset

ú Just count the number of instruction half-words
between target and jump to determine the offset:
position-independent code (PIC)

§ What about references to static data?
ú la gets broken up into lui and addi

(use auipc/addi for PIC)
ú These require the full 32-bit address of the data

§ These can’t be determined yet, so we create
two tables …

Compiling, Assembling, Linking, and Loading (21)

Garcia, Nikoli�

Symbol Table

§ List of “ items” in this file that may be

used by other files

§ What are they?

ú Labels: function calling

ú Data: anything in the .data section;
variables which may be accessed across files

Compiling, Assembling, Linking, and Loading (22)

Garcia, Nikoli�

Relocation Table

§ List of “ items” whose address this file
needs

§ What are they?
ú Any absolute label jumped to: jal, jalr

 Internal

 External (including lib files)

 Such as the la instruction
E.g., for jalr base register

ú Any piece of data in static section

 Such as the la instruction
E.g., for lw/sw base register

Compiling, Assembling, Linking, and Loading (23)

Garcia, Nikoli�

Object File Format
§ object file header: size and position of the other

pieces of the object file

§ text segment: the machine code

§ data segment: binary representation of the static
data in the source file

§ relocation information: identifies lines of code that
need to be fixed up later

§ symbol table: list of this file’s labels and static data
that can be referenced

§ debugging information

§ A standard format is ELF (except MS)
http://www.skyfree.org/linux/references/ELF_Format.pdf

þ

Compiling, Assembling, Linking, and Loading (25)

Garcia, Nikoli�

Where Are We Now?

Compiling, Assembling, Linking, and Loading (26)

Garcia, Nikoli�

Linker (1/3)

§ Input: Object code files, information tables (e.g.,
foo.o,libc.o for RISC-V)

§ Output: Executable code (e.g., a.out for RISC-V)

§ Combines several object (.o) files into a single

executable (“ linking”)

§ Enable separate compilation of files

ú Changes to one file do not require recompilation of the
whole program

 Linux source > 20 M lines of code!

ú Old name “Link Editor” from editing the “links” in jump and
link instructions

Compiling, Assembling, Linking, and Loading (27)

Garcia, Nikoli�

.o file 1

text 1

data 1

info 1

.o file 2

text 2

data 2

info 2

Linker

a.out

Relocated text 1

Relocated text 2

Relocated data 1

Relocated data 2

Linker (2/3)

Compiling, Assembling, Linking, and Loading (28)

Garcia, Nikoli�

Linker (3/3)

§ Step 1: Take text segment from each .o

file and put them together

§ Step 2: Take data segment from each .o

file, put them together, and concatenate

this onto end of text segments

§ Step 3: Resolve references

ú Go through Relocation Table; handle each
entry

ú I.e., fill in all absolute addresses

Compiling, Assembling, Linking, and Loading (29)

Garcia, Nikoli�

Four Types of Addresses

§ PC-Relative Addressing (beq, bne, jal;
auipc/addi)
ú Never need to relocate (PIC: Position-Independent

Code)

§ Absolute Function Address (auipc/jalr)
ú Always relocate

§ External Function Reference (auipc/jalr)
ú Always relocate

§ Static Data Reference (often lui/addi)
ú Always relocate

Compiling, Assembling, Linking, and Loading (30)

Garcia, Nikoli�

Absolute Addresses in RISC-V

§ Which instructions need relocation editing?

ú J-format: jump/jump and link

ú I-,S- Format: Loads and stores to variables in static
area, relative to global pointer

ú What about conditional branches?

ú PC-relative addressing preserved even if code moves

jalxxxxx

lwgp rdxxx

beq
bners1 rs2 x

rd

swrs1 gpxx

xx

x

Compiling, Assembling, Linking, and Loading (31)

Garcia, Nikoli�

Resolving References (1/2)

§ Linker assumes first word of first text

segment is at address 0x10000 for RV32

ú (More later when we study “virtual memory”)

§ Linker knows:

ú Length of each text and data segment

ú Ordering of text and data segments

§ Linker calculates:

ú Absolute address of each label to be jumped to
(internal or external) and each piece of data
being referenced

Compiling, Assembling, Linking, and Loading (32)

Garcia, Nikoli�

Resolving References (2/2)

§ To resolve references:

ú Search for reference (data or label) in all
“user” symbol tables

ú If not found, search library files (e.g., for
printf)

ú Once absolute address is determined, fill in
the machine code appropriately

§ Output of linker: executable file

containing text and data (plus header)

32

Compiling, Assembling, Linking, and Loading (33)

Garcia, Nikoli�

Static vs. Dynamically Linked Libraries

§ What we’ve described is the traditional
way: statically-linked approach
ú Library is now part of the executable, so if the

library updates, we don’t get the fix (have to
recompile if we have source)

ú Includes the entire library even if not all of it will
be used

ú Executable is self-contained

§ Alternative is dynamically-linked libraries
(DLL), common on Windows & UNIX
platforms

33

Compiling, Assembling, Linking, and Loading (34)

Garcia, Nikoli�

Dynamically Linked Libraries (1/2)

§ Space/ time issues

+ Storing a program requires less disk space

+ Sending a program requires less time

+ Executing two programs requires less memory (if they
share a library)

– At runtime, there’s time overhead to do link

§ Upgrades

+ Replacing one file (libXYZ.so) upgrades every
program that uses library “XYZ”

– Having the executable isn’t enough anymore

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system.

However, it provides many benefits that often outweigh these

en.wikipedia.org/wiki/Dynamic_linking

34

Compiling, Assembling, Linking, and Loading (35)

Garcia, Nikoli�

Dynamically Linked Libraries (2/2)

§ Prevailing approach to dynamic linking

uses machine code as the “ lowest
common denominator”

ú Linker does not use information about how
the program or library was compiled (i.e.,
what compiler or language)

ú Can be described as “linking at the machine
code level”

ú This isn’t the only way to do it ...

35

þ

Compiling, Assembling, Linking, and Loading (37)

Garcia, Nikoli�

Where Are We Now?

Compiling, Assembling, Linking, and Loading (38)

Garcia, Nikoli�

Loader Basics

§ Input: Executable Code (e.g., a.out for

RISC-V)

§ Output: (program is run)

§ Executable files are stored on disk

§ When one is run, loader’s job is to load
it into memory and start it running

§ In reality, loader is the operating

system (OS)

ú Loading is one of the OS tasks

Compiling, Assembling, Linking, and Loading (39)

Garcia, Nikoli�

§ Reads executable file’s header to determine size of text and
data segments

§ Creates new address space for program large enough to
hold text and data segments, along with a stack segment

§ Copies instructions + data from executable file into the new
address space

§ Copies arguments passed to the program onto the stack

§ Initializes machine registers

ú Most registers cleared, but stack pointer assigned address of 1st free
stack location

§ Jumps to start-up routine that copies program’s arguments
from stack to registers & sets the PC

ú If main routine returns, start-up routine terminates program with exit
system call

Loader … What Does It Do?

þ

Compiling, Assembling, Linking, and Loading (41)

Garcia, Nikoli�

Example C Program: Hello.c

#include <stdio.h>

int main()

{

printf("Hello, %s\n", "world");

return 0;

}

Compiling, Assembling, Linking, and Loading (42)

Garcia, Nikoli�

.text

.align 2

.globl main

main:

addi sp,sp,-16

sw ra,12(sp)

lui a0,%hi(string1)

addi a0,a0,%lo(string1)

lui a1,%hi(string2)

addi a1,a1,%lo(string2)

call printf

lw ra,12(sp)

addi sp,sp,16

li a0,0

ret

.section .rodata

.balign 4

string1:

.string "Hello, %s!\n"

string2:

.string "world"

Compiled Hello.c: Hello.s
Directive: enter text section

Directive: align code to 2^2 bytes

Directive: declare global symbol main

label for start of main

allocate stack frame

save return address

compute address of

string1

compute address of

string2

call function printf

restore return address

deallocate stack frame

load return value 0

return

Directive: enter read-only data section

Directive: align data section to 4 bytes

label for first string

Directive: null-terminated string

label for second string

Directive: null-terminated string

Compiling, Assembling, Linking, and Loading (43)

Garcia, Nikoli�

00000000 <main>:

0: ff010113 addi sp,sp,-16

4: 00112623 sw ra,12(sp)

8: 00000537 lui a0,0x0 # addr placeholder

c: 00050513 addi a0,a0,0 # addr placeholder

10: 000005b7 lui a1,0x0 # addr placeholder

14: 00058593 addi a1,a1,0 # addr placeholder

18: 00000097 auipc ra,0x0 # addr placeholder

1c: 000080e7 jalr ra # addr placeholder

20: 00c12083 lw ra,12(sp)

24: 01010113 addi sp,sp,16

28: 00000513 addi a0,a0,0

2c: 00008067 jalr ra

Assembled Hello.s: Linkable Hello.o

Compiling, Assembling, Linking, and Loading (44)

Garcia, Nikoli�

Linked Hello.o: a.out

000101b0 <main>:

101b0: ff010113 addi sp,sp,-16

101b4: 00112623 sw ra,12(sp)

101b8: 00021537 lui a0,0x21

101bc: a1050513 addi a0,a0,-1520 # 20a10
<string1>

101c0: 000215b7 lui a1,0x21

101c4: a1c58593 addi a1,a1,-1508 # 20a1c
<string2>

101c8: 288000ef jal ra,10450 # <printf>

101cc: 00c12083 lw ra,12(sp)

101d0: 01010113 addi sp,sp,16

101d4: 00000513 addi a0,0,0

101d8: 00008067 jalr ra

Compiling, Assembling, Linking, and Loading (45)

Garcia, Nikoli�

LUI/ADDI Address Calculation in RISC-V
Target address of <string1> is 0x00020 A10

Instruction sequence LUI 0x00020, ADDI 0xA10

doesn’t quite work because immediates in RISC-V are sign extended
(and 0xA10 has a 1 in the high order bit)!

0x00020 000 + 0xFFFFF A10 = 0x0001F A10

(Off by 0x00001 000)

So we get the right address if we calculate it as follows:
(0x00020 000 + 0x00001 000) + 0xFFFFF A10 = 0x00020 A10

What is 0xFFFFF A10?

Twos complement of 0xFFFFF A10 = 0x00000 5EF + 1 = 0x00000 5F0 = 1520ten

So 0xFFFFF A10 = -1520ten

Instruction sequence LUI 0x00021, ADDI -1520

calculates 0x00020 A10

Compiling, Assembling, Linking, and Loading (46)

Garcia, Nikoli�

§ Compiler converts a single HLL file

into a single assembly language

file

§ Assembler removes pseudo-

instructions, converts what it can to

machine language, and creates a

checklist for the linker (relocation

table): A .s file becomes a .o file

ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and

resolves absolute addresses

ú Enables separate compilation, libraries

that need not be compiled, and resolves

remaining addresses

§ Loader loads executable into

memory and begins execution

And In Conclusion, …

þ

