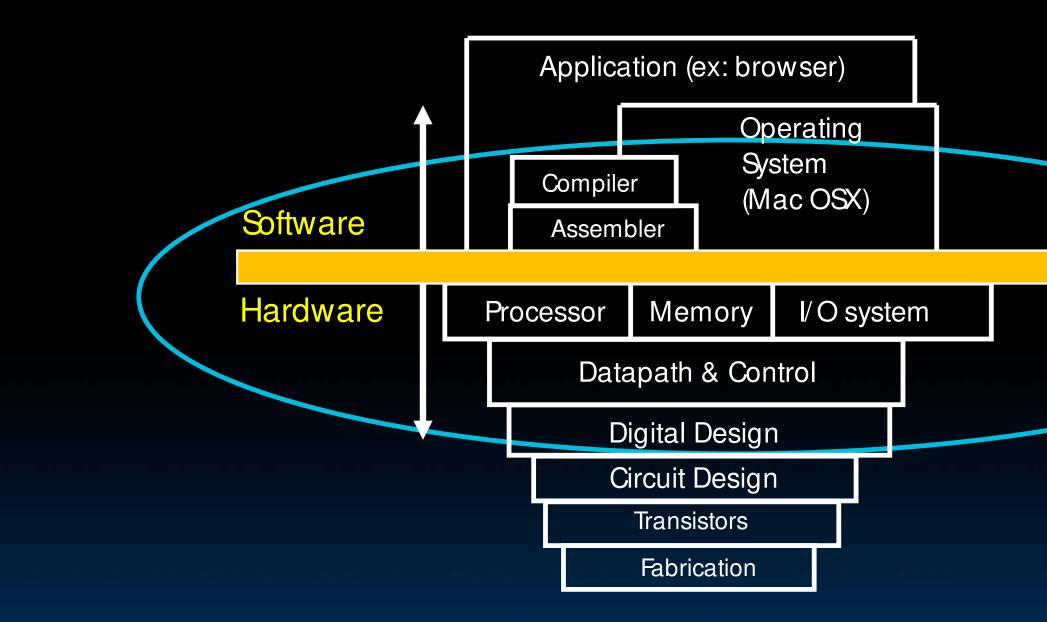


UC Berkeley Teaching Professor Dan Garcia

Introduction to Synchronous Digital Systems (SDS): Switches, Transistors, Signals & Waveforms

cs61c.org


UC Berkeley Professor Bora Nikolić

Machine Structures

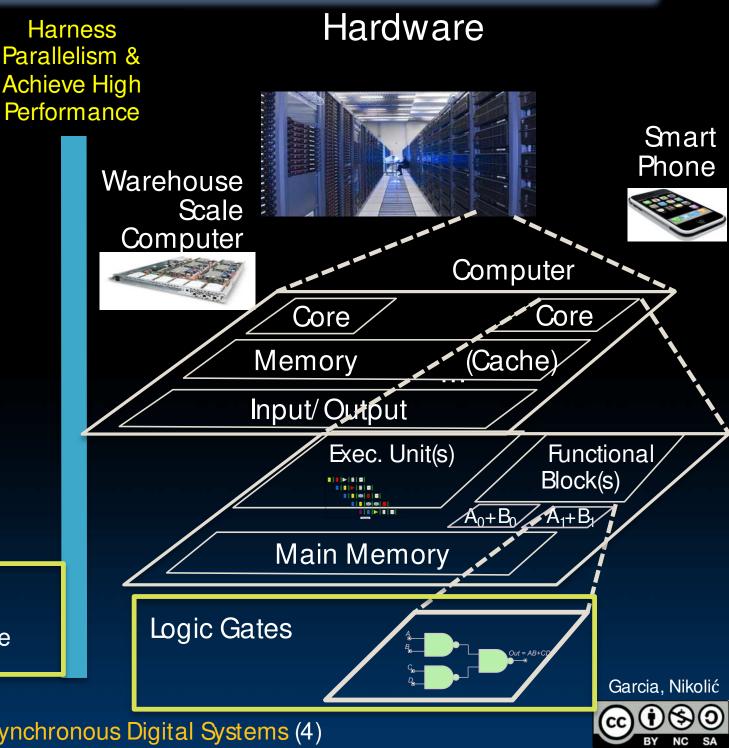
Synchronous Digital Systems (3)

Instruction Set Architecture

New-School Machine Structures

Software Parallel Requests Assigned to computer e.g., Search "Cats"

Parallel Threads

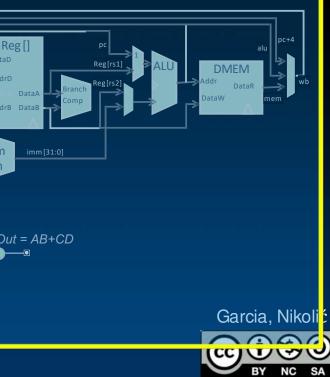

Assigned to core e.g., Lookup, Ads

Parallel Instructions

- >1 instruction @one time e.g., 5 pipelined instructions Parallel Data
- >1 data item @one time e.g., Add of 4 pairs of words

Hardware descriptions All gates work in parallel at same time

Synchronous Digital Systems (4)


Great Idea #1: Abstraction (Levels of Representation/Interpretation)

High Level Language Program (e.g., C)	<pre>temp = v[k]; v[k] = v[k+1]; v[k+1] = temp;</pre>
Compiler Assembly Language Program (e.g., RISC-V) Assembler	lw x3, 0(x10) lw x4, 4(x10) sw x4, 0(x10) sw x3, 4(x10) 1000 1101 1110 0010 000
Machine Language Program (RISC-V)	1000 1110 0001 0000 000 1010 1110 0001 0010 000 1010 1101 1110 0010 000
Hardware Architecture Des (e.g., block diagrams) Architecture Im	olementation
Logic Circuit Description (Circuit Schematic Diagrams	S) A_{\odot} B_{\odot} C_{\odot} D_{\odot}
Berkeley	chronous Digital Systems (5)

UNIVERSITY OF CALIFORNIA

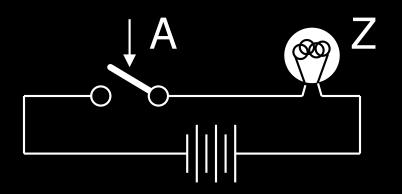
Synchronous Digital Systems (5)

000 0000 0000 0000 000 0000 0000 0100 000 0000 0000 0000 000 0000 0000 0100

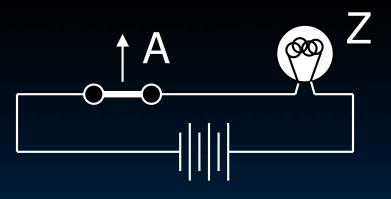
Synchronous Digital Systems

- Hardware of a processor, e.g., RISC-V, is a Synchronous Digital System
- Synchronous:
 - All operations coordinated by a central clock
 - "Heartbeat" of the system!
- Digital:
 - All values represented by discrete values
 - Electrical signals are treated as 1s and 0s; grouped together to form words

- Next several weeks: we'll study how a modern processor is built; starting with basic elements as building blocks
- Why study hardware design?
 - Understand capabilities and limitations of hw in general and processors in particular
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more in depth HW courses (150, 152)
 - There is just so much you can do with standard processors: you may need to design own custom hw for extra performance



Synchronous Digital Systems (7)



Switches: Basic Element of Physical Circuit

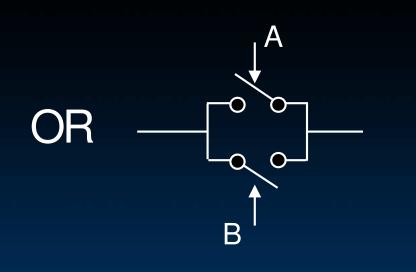
Implementing a simple circuit Close switch when A is 1, open when A is 0

Close switch (if A is "1" or asserted) and turn on light bulb (Z)

Open switch (if A is "0" or unasserted) and turn off light bulb (Z)

Z ≡ A

Synchronous Digital Systems (8)



Switches (continued)

Compose switches into more complex ones (Boolean functions):

 $Z \equiv A \text{ or } B$

Synchronous Digital Systems (9)

Historical Note

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work: ANDs, ORs,
- Master's thesis (by Claude Shannon) made link between transistors and 19th Century Mathematician George Boole
 - Called it "Boolean" in his honor
- Could apply math to give theory to hardware design, minimization, ...

Transistors

The Transistor ("born" 1947-12-23)

- Semiconductor device to <u>amplify</u> or <u>switch</u> signals
 - Key component in ALL modern electronics
- Who?
 - John Bardeen, William Shockley, Walter Brattain
- Before that?
 - Vacuum Tubes
- After that?
 - Integrated circuit, microprocessor

Synchronous Digital Systems (12)

en.wikipedia.org/wiki/History of the transistor www.pbs.org/transistor voutu.be/-td7YT-Pums youtu.be/OwS9aTE2Go4

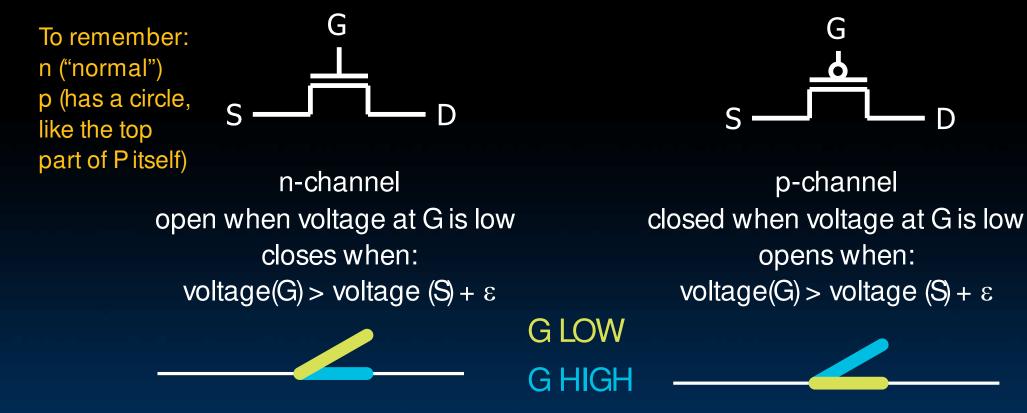
"The Transistor was probably THEmost important invention of the 20th Century" - Ira Hatow, Transistorized! (PBS Special)

Transistor Networks

- Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: normally-open and normally-closed switches

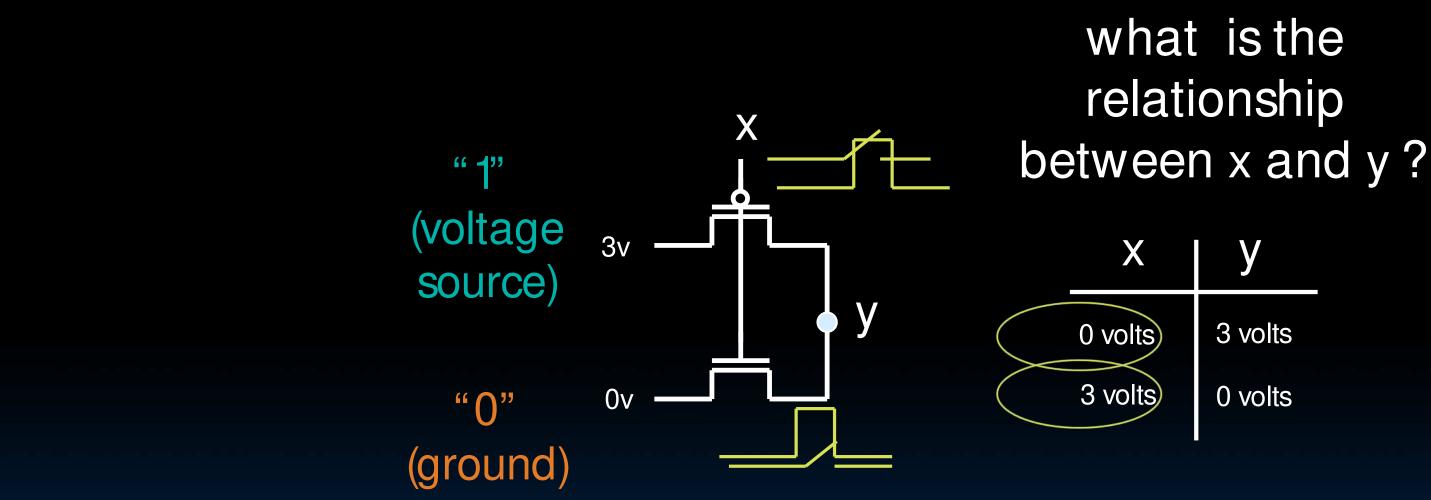
MOS transistors act as voltagecontrolled switches

Synchronous Digital Systems (13)

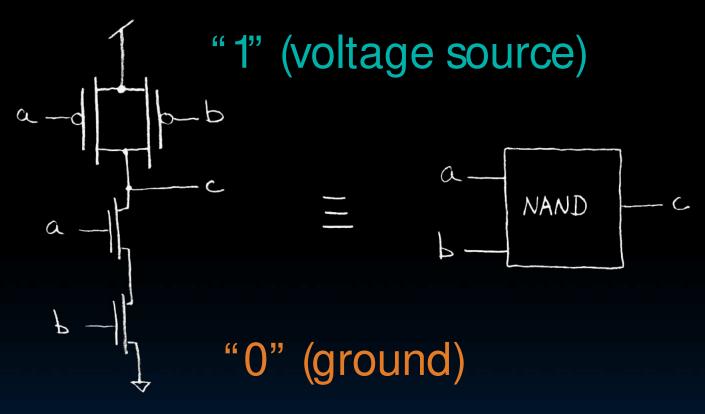


MOS Transistors

- Three terminals: Drain, Gate, Source
 - Dan Garcia Says Switch action: if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals

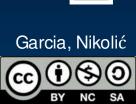


Synchronous Digital Systems (14)



Synchronous Digital Systems (15)

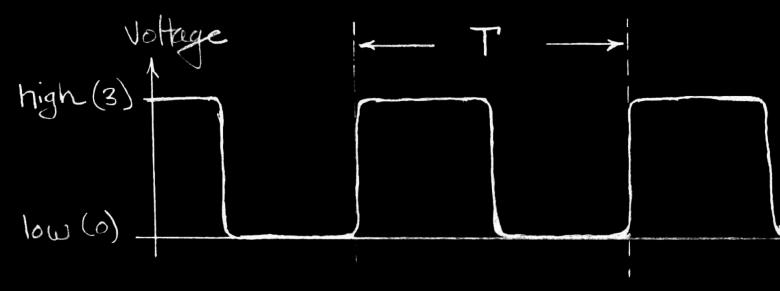
Transistor Circuit Rep. vs. Block diagram


- Chips are composed of nothing but transistors and wires.
- Small groups of transistors form useful building blocks.

Block are organized in a hierarchy to build higher-level blocks: ex: adders.

You can build AND, OR, NOT out of NAND! Synchronous Digital Systems (16)

а	b	С
0	0	1
0	1	1
1	0	1
1	1	0

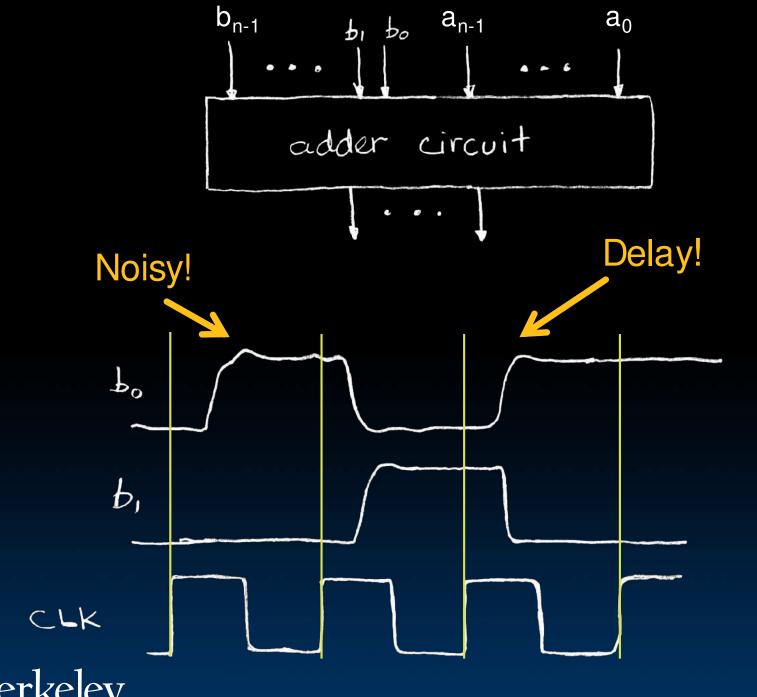


Signals and Waveforms

Signals and Waveforms: Clocks

Signals

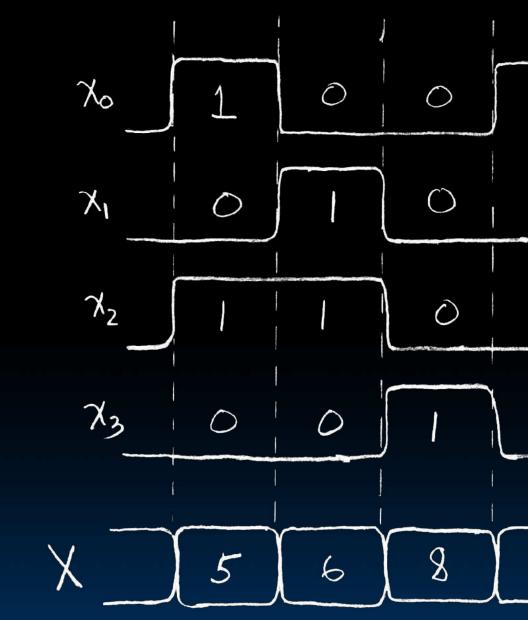
- When digital is only treated as 1 or 0
- Is transmitted over wires continuously
- Transmission is effectively instant
- Implies that a wire contains 1 value at a time



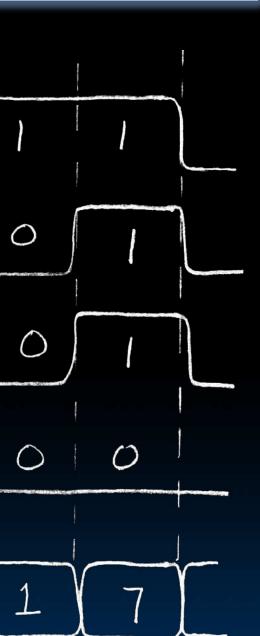
Synchronous Digital Systems (18)

> time

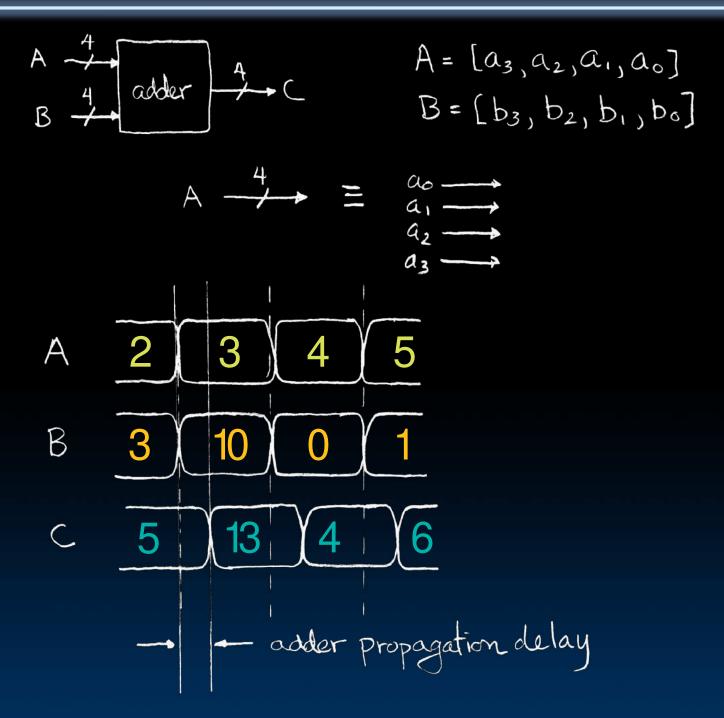
Signals and Waveforms


Synchronous Digital Systems (19)

Voltage * time


Signals and Waveforms: Grouping

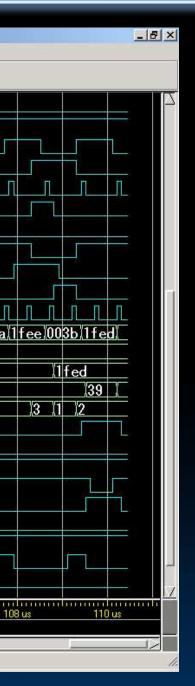
X3 X2X1X0



Synchronous Digital Systems (20)

Signals and Waveforms: Circuit Delay

Synchronous Digital Systems (21)



Sample Debugging Waveform

<mark>ed</mark> wave – default <u>File Edit C</u> ursor <u>Z</u> oom <u>B</u> ookmar	k Forma	t Window														
≤∎@ %®@ <u>}</u> X	77		2 Q Q			(i): (i):	X									
/tb/DBG_00[10]	St0															
/tb/DBG_00[9]	St0										Ĩ	1				
/tb/DBG_00[8]	St0															
<pre>/tb/DBG_00[7]</pre>	St1		- F						8				1	di.		
/tb/DBG_00[6]	St0	П	Π	2		П	П	Π	Π		Π		22	Π		
<pre>/tb/DBG_00[5]</pre>	St0											1	1			
<pre>/tb/DBG_00[4]</pre>	St0							==								
<pre>/tb/DBG_00[3]</pre>	St0															
<pre>/tb/DBG_00[2]</pre>	StO															
<pre>/tb/DBG_00[1]</pre>	StO							12								
<pre>/tb/DBG_00[0]</pre>	StO	пп	пп		пп	пп	п	пп	П	П	П	П	П	П	П	П
⊕	0000	1003	1 If of	0035 0	038 00	136 001	38 00.	27 00	38		[Y		103	9/1f	00	003a
⊞-⊴ /tb/IB	3a	3a	u/men	1000010	000,00	3e	50 A 0 0 A		00		^		/00	2 <u>4</u> 11	66	0002
⊡-⊴ /tb/ROMAD	0000	1fef		0038							1	fee				
	ff													00)	ff
🖃 /tb/TState	0	2)3	3 1 2)	3 4	5)1	2				
🥘 /tb/0E_n	St0															1
🥙 /tb/RAMCS_n	St1															
🧶 /tb/ROMCS_n	St0											2				
🥝 /tb/₩E_n	St1															
🥘 /tb/X_0E_n	St0											9	2			
/tb/X_RAMCS_n	St1															
<pre>/tb/X_ROMCS_n</pre>	St0										Ļ					
/tb/ReadVRAM	St0										L					
🔮 /tb/CSyncX	St0															
	0 ps	98) us	10000	1 1 1 1 1 1 1 02 us	mlin	104	1 4 us	uui	11111	106		uul	
	0 ps			27.2												
	· Property and a second	D														
96986540 ps to 111169300 ps	8															

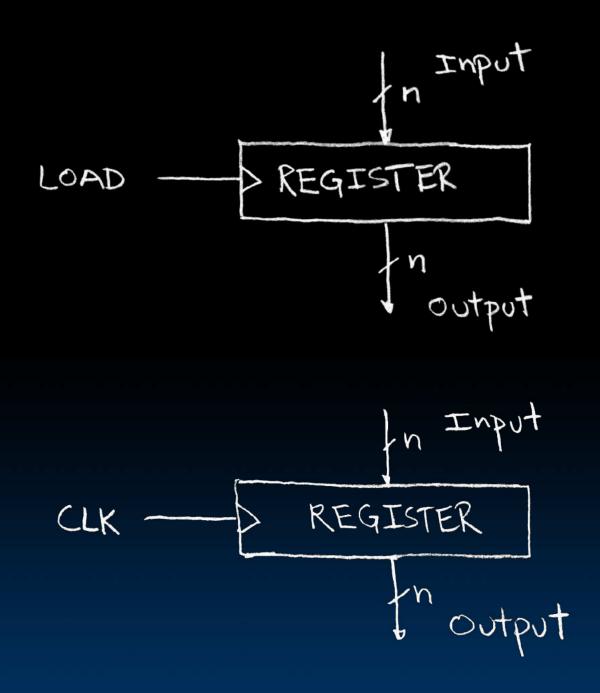
Synchronous Digital Systems (22)

Type of Circuits

- Synchronous Digital Systems are made up of two basic types of circuits:
- Combinational Logic (CL) circuits
 - Our previous adder circuit is an example.
 - Output is a function of the inputs only.
 - Similar to a pure function in mathematics, y = f(x). (No way to store information from one invocation to the next. No side effects)

State Bements

circuits that store information.



Synchronous Digital Systems (23)

Circuits with STATE (e.g., register)

CS

Synchronous Digital Systems (24)

And in conclusion...

 Clocks control pulse of our circuits Voltages are analog, quantized to 0/1 Circuit delays are fact of life Two types of circuits: Stateless Combinational Logic (&, I, ~) State circuits (e.g., registers)

Synchronous Digital Systems (25)

