

UC Berkeley **Teaching Professor** Dan Garcia

Great Ideas in Computer Architecture (a.k.a. Machine Structures)

66

Combinational Logic

cs61c.org

UC Berkeley Professor Bora Nikolić

Truth Tables

a \square How many Fs (4-input devices) @Fry's?

Combinational Logic (3)

d	У
0	F(0,0,0,0)
1	F(0,0,0,1)
0	F(0,0,1,0)
1	F(0,0,1,1)
0	F(0,1,0,0)
1	F(0,1,0,1)
0	F(0,1,1,0)
1	F(0,1,1,1)
0	F(1,0,0,0)
1	F(1,0,0,1)
0	F(1,0,1,0)
1	F(1,0,1,1)
0	F(1,1,0,0)
1	F(1,1,0,1)
0	F(1,1,1,0)
1	F(1,1,1,1)

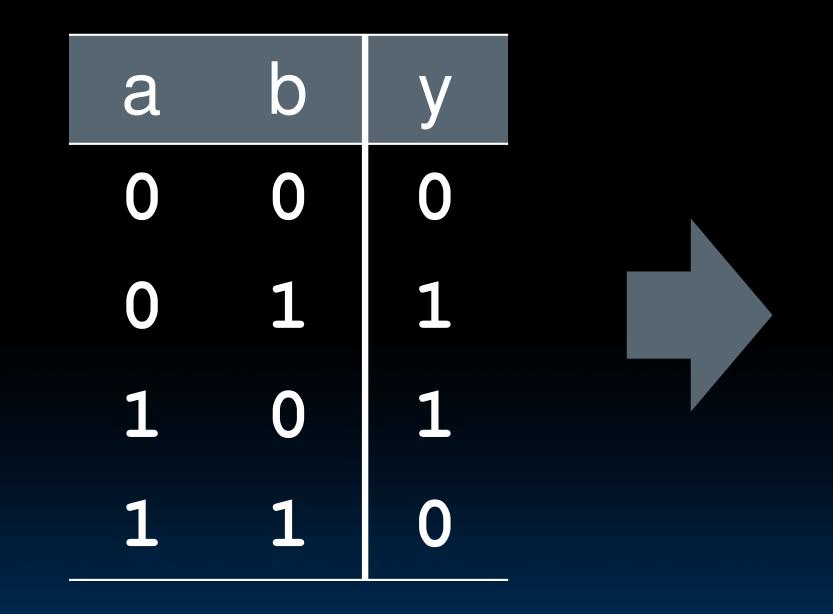
b

С

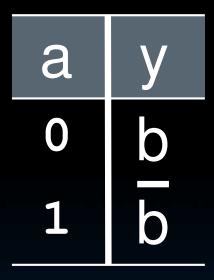
 $\mathbf{0}$

a

TT Example #1: 1 iff one (not both) a,b=1



Combinational Logic (4)



TT Example #2: 2-bit adder

A

2

B

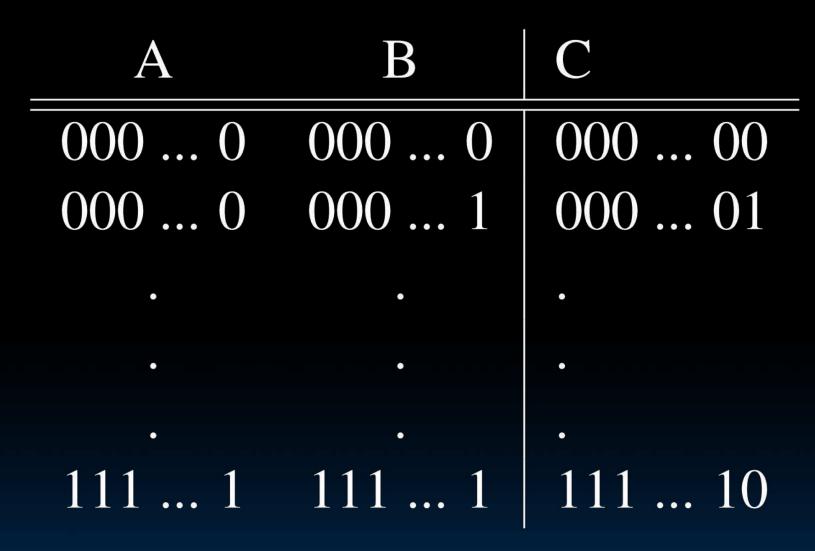
2

3

	А	В	С
	$a_1 a_0$	b_1b_0	$c_2 c_1 c_0$
	00	00	000
	00	01	001
	00	10	010
	00	11	011
\neg	01	00	001
	01	01	010
	01	10	011
	01	11	100
	10	00	010
	10	01	011
	10	10	100
	10	11	101
	11	00	011
	11	01	100
	11	10	101
	11	11	110

Combinational Logic (5)

How Many Rows?



Combinational Logic (6)

How Many Rows?

TT Example #4: 3-input majority circuit

а	b	С	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

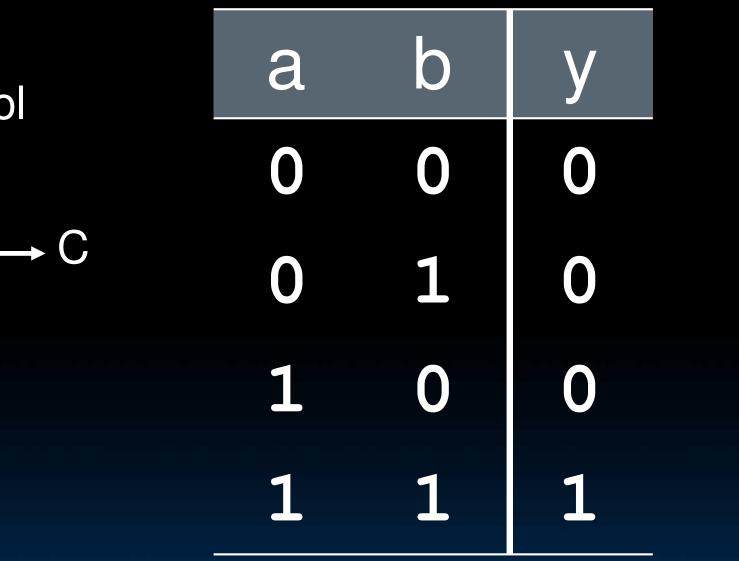
CS

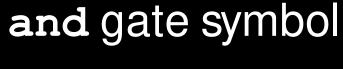
Combinational Logic (7)

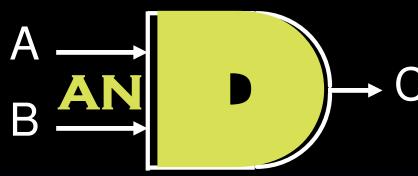
Combinational Logic (9)

ab	c
00	0
01	0
10	0
11	1
ab	C
00	0
01	1
10	1
11	1
a	b
0	1
1	$\mathbf{\Omega}$

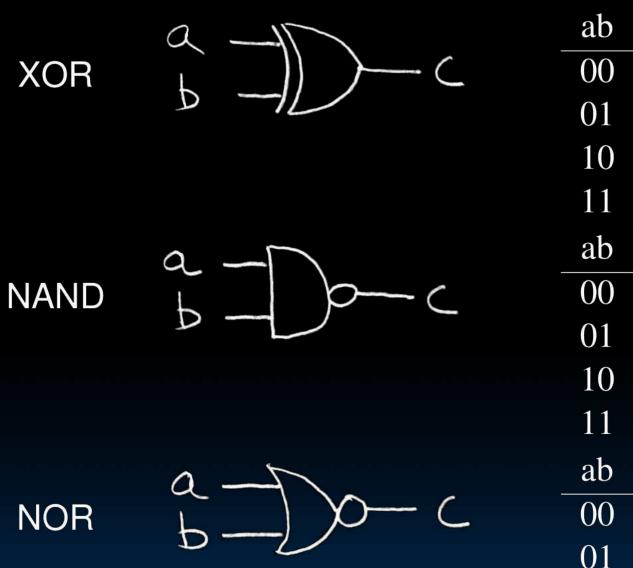
U







Combinational Logic (10)

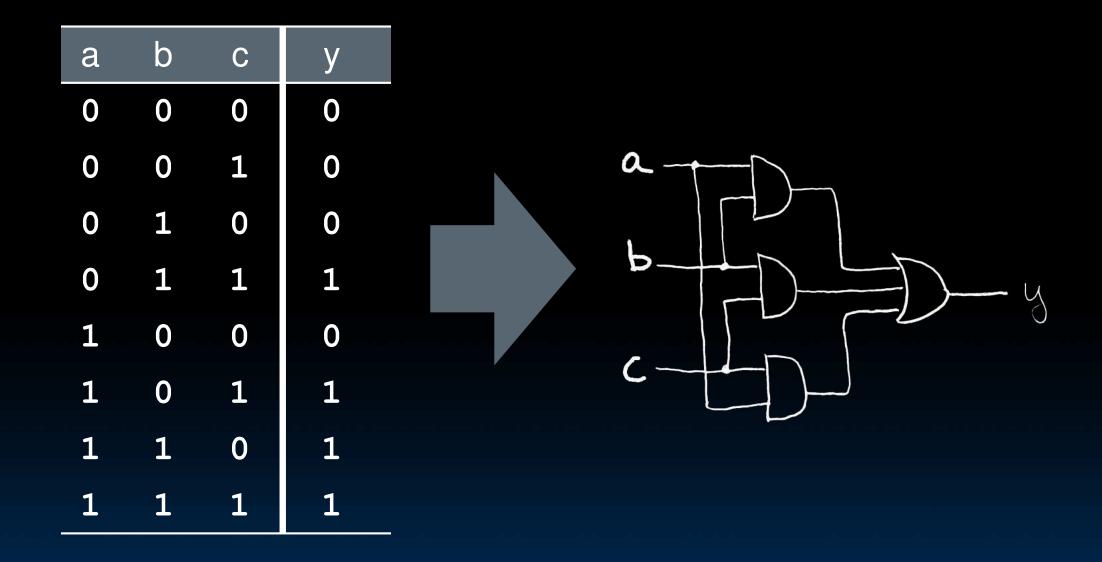


Combinational Logic (11)

)	c
) 1	0 1
	1
)	1
) [0 c
)	
) 1) 1	1
	1
)	1
	0
)	0 c
) [1
[
)	0 0
[0

		b	С	У
N-input XOR is the	0	0	0	0
only one which isn't	0	0	1	1
so obvious		1	0	1
		1	1	0
It's actually simple	1	0	0	1
XOR is a 1 iff the # of	1	0	1	0
1s at its input is odd	1	1	0	0
	1	1	1	1

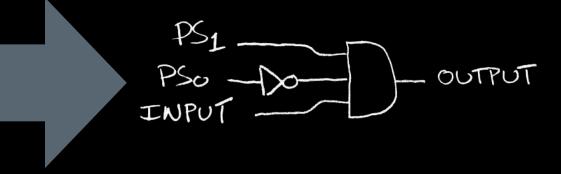
Truth Table \rightarrow Gates (e.g., majority circ.)



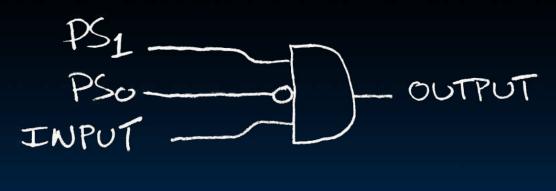
Combinational Logic (13)

Truth Table \rightarrow Gates (e.g., FSM circuit)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1



or equivalently...



Combinational Logic (14)

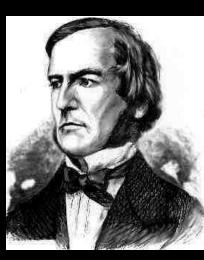
Boolean Algebra

Boolean Algebra

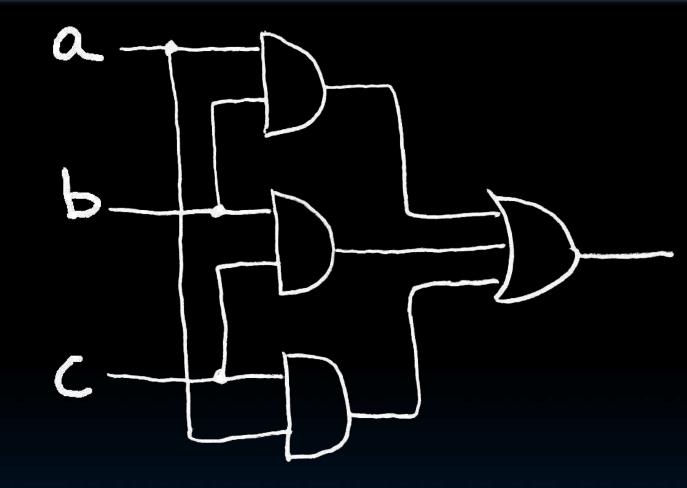
- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- Power of Boolean Algebra
 - there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

+ means OR• means AND, x means NOT

Combinational Logic (16)



Boolean Algebra (e.g., for majority fun.)

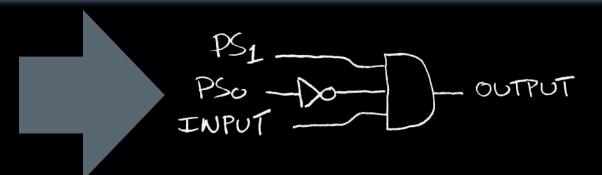


$y = a \cdot b + a \cdot c + b \cdot c$ y = ab + ac + bc

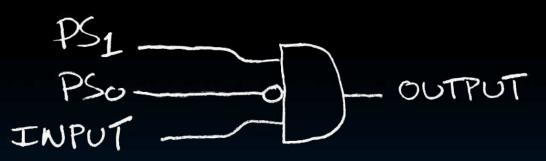
Combinational Logic (17)

Boolean Algebra (e.g., for FSM)

PS	INPUT	NS	OUTPUT
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1



or equivalently...



$OUTPUT = PS_1 \cdot PS_0 \cdot INPUT$

Combinational Logic (18)

BA: Circuit & Algebraic Simplification

y = ab + a + cab + a + c= a(b+1) + c= a(1) + c= a + c

original circuit

algebraic simplification

BA also great for circuit verification Circ X = Circ Y? Use BA to prove!

simplified circuit

Combinational Logic (19)

equation derived from original circuit

LOWS Of Boolean Algebra

Laws of Boolean Algebra

$x \cdot \overline{x} = 0$	$x + \overline{x} = 1$	(
$x \cdot 0 = 0$	x + 1 = 1	
$x \cdot 1 = x$	x + 0 = x	ľ
$x \cdot x = x$	x + x = x	
$x \cdot y = y \cdot x$	x + y = y + x	(
(xy)z = x(yz)	(x+y) + z = x + (y+z)	
x(y+z) = xy + xz	x + yz = (x + y)(x + z)	(
xy + x = x	(x+y)x = x	Į
$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{(x+y)} = \overline{x} \cdot \overline{y}$	

Combinational Logic (21)

complementarity laws of 0's and 1's identities idempotent law (communitive law associativity distribution uniting theorem DeMorgan's Law

y = ab + a + c= a(b+1) + c distribution, identity = a(1) + claw of 1's = a + cidentity

Combinational Logic (22)

Canonical forms (1/2)

abc \mathcal{Y} $\overline{a} \cdot \overline{b} \cdot \overline{c} = 000$ 1 $\overline{a} \cdot \overline{b} \cdot c = 001$ 1 010 0 0 011 $a \cdot \overline{b} \cdot \overline{c}$ 1001 0 101 $a \cdot b \cdot \overline{c}$ 110 1 111 0

Sum-of-products (ORs of ANDs)

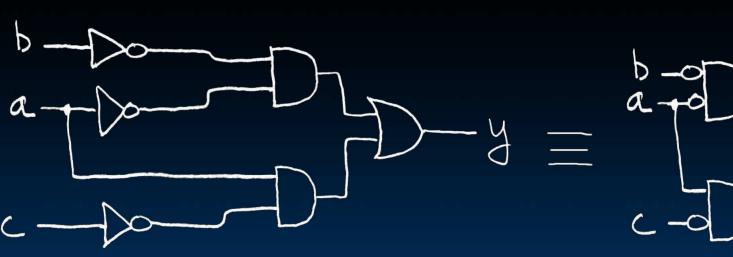
 $y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$

Combinational Logic (24)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad districtions = \overline{a}\overline{b}(1) + a\overline{c}(1) \quad component = \overline{a}\overline{b} + a\overline{c} \quad identer = \overline{a}\overline{b} + a\overline{c}$$



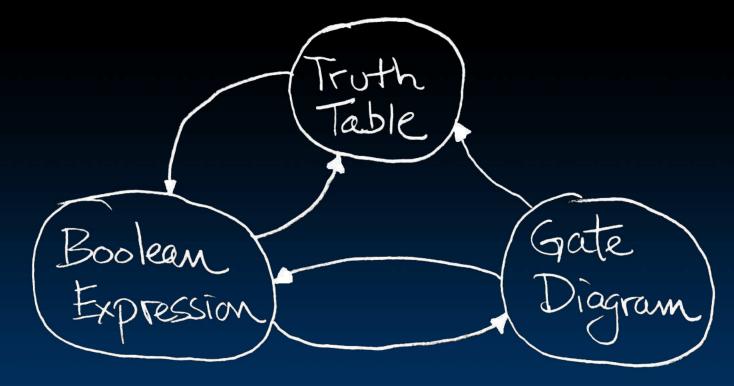
Combinational Logic (25)

lementarity

ity

"And In conclusion..."

- Pipeline big-delay CL for faster clock Finite State Machines extremely useful You'll see them again in (at least) 151A, 152 & 164
- Use this table and techniques we learned to transform from 1 to another



Combinational Logic (26)

