

RISC-V (29)

Garcia, Nikolić

‘Sequential’ RISC-V Datapath

29

Phase Pictogram tstep Serial

Instruction Fetch 200 ps

Reg Read 100 ps

ALU 200 ps

Memory 200 ps

Register Write 100 ps

tinstruction 800 ps

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

in
stru

ctio
n

 se
q

u
e

n
ce

tinstruction tinstruction tinstruction

RISC-V (30)

Garcia, Nikolić

Pipelined RISC-V Datapath

30

Phase Pictogram tstep Serial

Instruction Fetch 200 ps

Reg Read 100 ps

ALU 200 ps

Memory 200 ps

Register Write 100 ps

tinstruction 800 ps

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

in
stru

ctio
n

 se
q

u
e

n
ce

tinstruction

tcycle

tcycle Pipelined

200 ps

200 ps

200 ps

200 ps

200 ps

1000 ps

tcycle tcycle tcycle

RISC-V (31)

Garcia, Nikolić

Pipelined RISC-V Datapath

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

in
stru

ctio
n

 se
q

u
e

n
ce

tcycle tcycle tcycle tcycle

Single Cycle Pipelined

Timing tstep = 100 … 200 ps tcycle = 200 ps

Register access only 100 ps All cycles same length

Instruction time, tinstruction = tcycle = 800 ps 1000 ps

CPI (Cycles Per Instruction) ~1 (ideal) ~1 (ideal), <1 (actual)

Clock rate, fs 1/800 ps = 1.25 GHz 1/200 ps = 5 GHz

Relative speed 1 x 4 x

RISC-V (32)

Garcia, Nikolić

Sequential vs. Simultaneous
 What happens sequentially and what simultaneously?

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

tinstruction = 1000ps

tcycle

RISC-V (33)

Garcia, Nikolić

Sequential vs. Simultaneous
 What happens sequentially and what simultaneously?

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

tinstruction = 1000ps

tcycle

Resource use of

instruction over time

Resource use in a

particular time slot

RISC-V (35)

Garcia, Nikolić

Single-Cycle RV32I Datapath

ALUSel

+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

pc+4

Inst[24:20] ALU

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

R[rs1]

R[rs2]

Inst[31:0]

Control logic

RegWEn

0

1

Imm[31:0]

Bsel

Imm.

Gen

Inst

[31:20]

ImmSel

DataB

WBSel

0

1

MemRW

clk

0

1

Branch

Comp
mem

0

1 pc

PCSel BrUn

BrEq

BrLT Asel

2

RISC-V (36)

Garcia, Nikolić

Single-Cycle RV32I Datapath

+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

pc+4

Inst[24:20] ALU

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

R[rs1]

R[rs2]

0

1

Imm[31:0]

Imm.

Gen

Inst

[31:20]

DataB
0

1

clk

0

1

Branch

Comp
mem

0

1 pc

2

Instruction Fetch

(IF)

InstructionDecode/

Register Read

(ID)

ALU Execute

(EX)

Memory

Access

(MA)

W
ri

te
 B

a
ck

(WB)

RISC-V (37)

Garcia, Nikolić

Pipelined RV32I Datapath

+4
Add

clk

addr

inst

IMEM

addr

DMEM

PC

pc+4

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

0

1

Imm[31:0]Imm.

Gen

DataB
0

1

clk

0

1

Branch

Comp
mem

0

1 pc

2

+4 Add

W
ri

te
 B

a
ck

IF/ID ID/EX EX/MA MA/WB

Recalculate PC+4 in M stage to

avoid sending both PC and PC+4

down pipeline

Must pipeline instruction along with data, so control

operates correctly in each stage

pcID

instiD

pcEX

rs1EX

rs2EX

instEX
instMA

rs2MA

aluMA

pcMA

in
st

W
B

RISC-V (38)

Garcia, Nikolić

Pipelined RV32I Datapath

+4
Add

clk

addr

inst

IMEM

addr

DMEM

PC

pc+4

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

0

1

Imm[31:0]Imm.

Gen

DataB
0

1

clk

0

1

Branch

Comp
mem

0

1 pc

2

+4 Add

W
ri

te
 B

a
ck

pcID

instiD

pcEX

rs1EX

rs2EX

instEX
instMA

rs2MA

aluMA

pcMA

in
st

W
B

or t3,t4,t5slt t6,t0,t3sw t0,4(t3)lw t0,8(t3)

Pipeline registers separate stages, hold data for each instruction in flight

RISC-V (39)

Garcia, Nikolić

 Control signals derived from instruction

 As in single-cycle implementation

 Information is stored in pipeline registers for use by

later stages

Pipelined Control

39

in
st

ru
ct

io
n

C
o

n
tr

o
l WB

WB

WB

MA

MA
EX

IF/ID ID/EX EX/MA MA/WB

RISC-V (41)

Garcia, Nikolić

Hazards Ahead!

RISC-V (42)

Garcia, Nikolić

Pipelining Hazards
A hazard is a situation that prevents starting the

next instruction in the next clock cycle

1) Structural hazard
 A required resource is busy

(e.g. needed in multiple stages)

2) Data hazard

 Data dependency between instructions

 Need to wait for previous instruction to complete its
data read/write

3) Control hazard
 Flow of execution depends on previous instruction

42

RISC-V (43)

Garcia, Nikolić

 Problem: Two or more instructions in the

pipeline compete for access to a single

physical resource

 Solution 1: Instructions take it in turns to use

resource, some instructions have to stall

 Solution 2: Add more hardware to machine

 Can always solve a structural hazard by adding

more hardware

Structural Hazard

43

RISC-V (44)

Garcia, Nikolić

Regfile Structural Hazards

 Each instruction:

 Can read up to two operands in decode stage

 Can write one value in writeback stage

 Avoid structural hazard by having separate

“ports”

 Two independent read ports and one independent

write port

 Three accesses per cycle can happen

simultaneously

44

RISC-V (45)

Garcia, Nikolić

Structural Hazard: Memory Access

add t0, t1, t2

slt t6, t0, t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

sw t0, 4(t3)

lw t0, 8(t3)

addi t0, t1, t2

• Instruction and

data memory used

simultaneously

 Use two

separate

memories

RISC-V (46)

Garcia, Nikolić

Instruction and Data Caches

 Fast, on-chip memory, separate for instructions

and data

Control

Datapath

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Program

Data

Instruction Cache

Data Cache

RISC-V (47)

Garcia, Nikolić

 Conflict for use of a resource

 In RISC-V pipeline with a single memory

 Load/store requires data access

 Without separate memories, instruction fetch would
have to stall for that cycle

 All other operations in pipeline would have to wait

 Pipelined datapaths require separate
instruction/data memories

 Or separate instruction/data caches

 RISC ISAs (including RISC-V) designed to avoid
structural hazards

 e.g. at most one memory access/instruction

Structural Hazards – Summary

47

RISC-V (49)

Garcia, Nikolić

Data Hazard: Register Access

add t0, t1, t2

slt t6, t0, t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

sw t0, 4(t3)

or t3, t4, t5

addi t0, t1, t2

• Separate ports, but what if write to same register as read?

Does sw in the

example fetch the

old or new

value?

RISC-V (50)

Garcia, Nikolić

Data Hazard: Register Access

add t0, t1, t2

slt t6, t0, t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

sw t0, 4(t3)

or t3, t4, t5

addi t0, t1, t2

• Exploit high speed of register file (100 ps)

1) WB updates value

2) ID reads new value

• Indicated in diagram

by shading

Might not always be possible to write then read in same cycle,

especially in high-frequency designs. Check assumptions in

any question.

RISC-V (51)

Garcia, Nikolić

Data Hazard: ALU Result

add s0,t0,t1

or t6,s0,t3

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

5 5 5 5 5/9 9 9 9 9Value of s0

Without some fix, sub and or will calculate wrong result!

RISC-V (52)

Garcia, Nikolić

 Problem: Instruction depends on result from previous instruction
add s0, t0, t1
sub t2, s0, t3

“bubbles”

 Bubble:
 Effectively nop: Affected pipeline stages do “nothing”

Solution 1: Stalling

add s0, t0, t1

sub t2, s0, t3

RISC-V (53)

Garcia, Nikolić

 Stalls reduce performance

 But stalls are required to get correct results

 Compiler can arrange code or insert nops

(addi x0, x0, 0) to avoid hazards and

stalls

 Requires knowledge of the pipeline structure

Stalls and Performance

53

RISC-V (54)

Garcia, Nikolić

Solution 2: Forwarding

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

5 5 5 5 5/9 9 9 9 9Value of s0

Forwarding: grab operand from pipeline stage,

rather than register file

add s0,t0,t1

or t6,s0,t3

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

RISC-V (55)

Garcia, Nikolić

Forwarding (aka Bypassing)

add s0, t0, t1

sub t2, s0, t3

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

RISC-V (56)

Garcia, Nikolić

Data Needed for Forwarding (Example)

add t0, t0, t1

sub t3, t0, t5

sub t6, t0, t3

IF ID EX MA WBinstX.rd

instD.rs1

 Compare destination of older instructions in pipeline

with sources of new instruction in decode stage.

 Must ignore writes to x0!

RISC-V (57)

Garcia, Nikolić

Pipelined RV32I Datapath

+4
Add

clk

addr

inst

IMEM

addr

DMEM

PC

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

Imm.

Gen

DataB

clk

Branch

Comp

+4 Add

Forwarding

control logic

Remember to

forward operand B

as well!

