Pipelining RISC-V

Sequential' RISC-V Datapath

Phase	Pictogram	<i>t_{step}</i> Serial	
Instruction Fetch	имем	200 ps	
Reg Read	Reg	100 ps	
ALU	E	200 ps	
Memory	DMEM	200 ps	
Register Write	Reg	100 ps	
t _{instruction}		800 ps	
add t0, t1, or t3, t4, sll t6, t0,	t2 t2 t4 t4 t5 t3		$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Berkeley	RI	SC-V (29)	Garcia, Nikolić

Pipelined RISC-V Datapath

Phase	Pictogram	<i>t_{step}</i> Serial	<i>t_{cycle}</i> Pipelined
Instruction Fetch	IMEM	200 ps	200 ps
Reg Read	Reg	100 ps	200 ps
ALU	ALL	200 ps	200 ps
Memory	DMEM	200 ps	200 ps
Register Write	Reg	100 ps	200 ps
t _{instruction}		800 ps	1000 ps
nstruction sequence	$t1, t2 \xrightarrow{F} D$ $4, t5 \xrightarrow{F} U$ $10, t3 \xrightarrow{F} D$	$ \begin{array}{c} HOCHOH \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	WB Reg
Berkeley INVERSITY OF CALIFORNIA	t _{cycle}	t _{cycle} t _{cycle} t _{cycle} SC-V (30)	Garcia, N

Pipelined RISC-V Datapath

add t0, t1, or t3, t4, sll t6, t0,	t2 t^{r} t^{r}	WB + Reg MA WB + DMEM + + Reg
	Single Cycle	Pipelined
Timing	<i>t_{step}</i> = 100 … 200 ps	$t_{cycle} = 200 \text{ ps}$
	Register access only 100 ps	All cycles same length
Instruction time, t _{instruction}	<i>= t_{cycle}</i> = 800 ps	1000 ps
CPI (Cycles Per Instruction) ~1 (ideal)		~1 (ideal), <1 (actual)
Clock rate, <i>f</i> s	1/800 ps = 1.25 GHz	1/200 ps = 5 GHz
Relative speed	1x	4 x
Berkeley	RISC-V (31)	Garcia, Nikolić

Sequential vs. Simultaneous

Sequential vs. Simultaneous

RISC-V (33)

Pipelining Datapath

Single-Cycle RV32I Datapath

RISC-V (35)

Single-Cycle RV32I Datapath

Pipelined RV32I Datapath

Recalculate PC+4 in M stage to avoid sending both PC and PC+4 down pipeline

Pipelined RV32I Datapath

Pipelined Control

- Control signals derived from instruction
 - As in single-cycle implementation
 - Information is stored in pipeline registers for use by later stages

Pipeline Hazards

Hazards Ahead!

Beyond this point: Radio frequency fields at this site may exceed FCC rules for human exposure.

Failure to obey all posted signs and site guidelines for working in radio frequency environments could result in serious injury.

In accordance with Redenti Gommunic story Commission rules an radio frequency emission 42 GFR 1.4287(b)

RISC-V (41)

Pipelining Hazards

A *hazard* is a situation that prevents starting the next instruction in the next clock cycle

1) Structural hazard

 A required resource is busy (e.g. needed in multiple stages)

2) Data hazard

- Data dependency between instructions
- Need to wait for previous instruction to complete its data read/write
- 3) Control hazard
 - Flow of execution depends on previous instruction

 Problem: Two or more instructions in the pipeline compete for access to a single physical resource

- Solution 1: Instructions take it in turns to use resource, some instructions have to stall
- Solution 2: Add more hardware to machine
- Can always solve a structural hazard by adding more hardware

Regfile Structural Hazards

- Each instruction:
 - Can read up to two operands in decode stage
 - Can write one value in writeback stage
- Avoid structural hazard by having separate "ports"
 - Two independent read ports and one independent write port
- Three accesses per cycle can happen simultaneously

Structural Hazard: Memory Access

Garcia, Nikolić

instruction sequence

Instruction and Data Caches

 Fast, on-chip memory, separate for instructions and data

RISC-V (46)

Structural Hazards – Summary

- Conflict for use of a resource
- In RISC-V pipeline with a single memory
 - Load/store requires data access
 - Without separate memories, instruction fetch would have to stall for that cycle
 - All other operations in pipeline would have to wait
- Pipelined datapaths require separate instruction/data memories
 - Or separate instruction/data caches
- RISC ISAs (including RISC-V) designed to avoid structural hazards
 - e.g. at most one memory access/instruction

Data Hazards

Data Hazard: Register Access

 Separate ports, but what if write to same register as read? Does **sw** in the example fetch the old or new add t0, t1, t2 \bowtie Reg DMEM instruction sequence value? or t3, t4, t5-> DMEM slt t6, t0, t3 Reg sw t0, 4(t3) addi t0, t1, t2 → DMEM → → Reg

Berkeley

Data Hazard: Register Access

Data Hazard: ALU Result

- Bubble:
 - Effectively nop: Affected pipeline stages do "nothing"

Stalls and Performance

- Stalls reduce performance
 - But stalls are required to get correct results
- Compiler can arrange code or insert nops
 (addi x0, x0, 0) to avoid hazards and stalls
 - Requires knowledge of the pipeline structure

Solution 2: Forwarding

Forwarding (aka Bypassing)

- Use result when it is computed
 - Don't wait for it to be stored in a register
 - Requires extra connections in the datapath

Data Needed for Forwarding (Example)

- Compare destination of older instructions in pipeline with sources of new instruction in decode stage.
- Must ignore writes to x0!

Pipelined RV32I Datapath

Berkeley

RISC-V (57)

