Load Data
Hazard

Value of s0

5 5 5 |[5/9]| 9 9 9 9

add s0,t0,tl ﬂ”ﬁ]} A

=

)]

=] g] _

g sub t2 ’ s0 ’ t0] R DMEM | {

o)]]]

>

»n | or t6,s0,t3 PN {

0 I -] f[

O _ _

C DMEM

5 | xor ts,¢1,80 FHERIB -

(@) _

D U

sw 50,8 (£3) BB EAE
v Forwarding: grab operand from pipeline stage,
rather than register file SR

Berkeley RISC (59) OS8O

Needs to be here!

1w s2,20(s1) ﬂﬂr

and s4,s2,s5

or s8,s2,s6

add s9,s4,s2

aouanbas uononJsul

slt sl1l,s6,s7

\4

Berkeley

UNIVERSITY OF CALIFORNIA

Data from memory is here

33
£l

RISC-V (60)

i |

/ 1-cycle stall

unavoidable!
Forward

]

DMI

Unaffected

R

¥

DMEM

i

Load requires one-cycle pipeline stall

Garcia, Nikoli¢

1w s2,20(sl) M—HIEI:

and s4dnep,s5]

Stall Repeat
and and
forward

BHEE

M Load requires one-cycle pipeline stall

Garcia, Nikoli¢
Berkeley RISCY (61) OS8O

or s8,s2,s6

add s9,s4,s2

aouanbas uononJsul

slt sl1,s6,s7

= Slot after a load is called a load delay slot

o If that instruction uses the result of the load, then
the hardware will stall for one cycle

o Equivalent to inserting an explicit nop in the slot
= except the latter uses more code space
s Performance loss
" |dea:
s Put unrelated instruction into load delay slot
o No performance loss!

Garcia, Nikoli¢

Berkeley R— OS8O

6ic

Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result in the next instr!
= RISC-V code for A[3]=A[0]+A[1l]; A[4]=A[0]1+A[2]

Original Order: Alternative:

1w tl1, 0(t0) lw tl, 0(t0)

1w (t0))
)

Stalll w544 ©3, I3
t3, 12 (t0

(t4D8 (¢t
t5, tl, l add t5,

Co, I sw t5, 16(t0)

;
ydesl(

S\i
69
n
s
|
w

SW

1w
Stall! ~_44

SW

o)
(_'_
(@)

Garcia, Nikoli¢

()OO

IIIIIIIIIIIIIIIIIIIIII

RISC-V (63)

Control
Hazards

beg t0,tl,Label M—HIEI:

sub t2,s0,t0

or t6,s0,t3

xor t5,tl,s0

sw s0,8(t3)

Executed regardless of
branch outcome!

Hh

Executed regardless o
branch outcome!

updated
BB

Two stall cycles after a branch!

Berkeley

UNIVERSITY OF CALIFORNIA

Garcia, Nikoli¢

RISC-V (65) @

6ic

Observation

= |f branch not taken, then instructions fetched
sequentially after branch are correct

= |f branch or jump taken, then need to flush
incorrect instructions from pipeline by
converting to NOPs

Garcia, Nikoli¢

Berkeley — OHO

beg t0,tl,Label M—HIEI:
B jlif 10
IM) [,] Re

sub t2,s0,t0

or t6,s0,t3

Label: xor t5,tl,s0

IIIIIIIIIIIIIIIIIIIIII

RISC-V (67)

l DMEM {

Taken branch!

Convert to nop

:’ DMEM { Convert to nop

DMEM PC
updated

i
BB

Garcia, Nikoli¢
QOO
BY MNC SA

6ic

Reducing Branch Penalties

= Every taken branch in simple pipeline costs 2
dead cycles

= To improve performance, use “branch
prediction” to guess which way branch will go
earlier in pipeline

= Only flush pipeline if branch prediction was
Incorrect

Garcia, Nikoli¢

Berkeley — OHO

DMEM { Taken branch!
E Guess next PCI

R
BB

Garcia, Nikoli¢
Berkeley RISCY (69) OS8O

beqg t0,tl,Label EI:
Label :.. Yeul. |

Superscalar
Processors

nnnnn

& Increasing Processor Performance

@@@@@

1. Clock rate
o Limited by technology and power dissipation
2. Pipelining
o “Overlap” instruction execution
o Deeper pipeline: 5 =>10 => 15 stages
= Less work per stage = shorter clock cycle

* But more potential for hazards (CPI > 1)

3. Multi-issue “superscalar” processor

Garcia, Nikoli¢

§Eg£1§%l§y RISC-V (M) @

ARRAA

@ Superscalar Processor

sEFreEw

= Multiple issue “superscalar”
o Replicate pipeline stages = multiple pipelines
o Start multiple instructions per clock cycle
o CPl< 1, so use Instructions Per Cycle (IPC)
o E.g., 4GHz 4-way multiple-issue
= 16 BIPS, peak CPI =0.25, peak IPC=4
o Dependencies reduce this in practice
= “Out-of-Order” execution

o Reorder instructions dynamically in hardware to
reduce impact of hazards

= (CS152 discusses these techniques!

Garcia, Nikoli¢
1%&};1&%1"97 RISC-V (72) @

Superscalar Processor

Instruction fetch
and decode unit

In-order issue

Y Y Y Y

Reservation | | Reservation Reservation || Reservation
station station A station station

Functional
units

Floating Load-
point store

Integer Integer Out-of-order execute

\

Commit In-order commit
unit

P&H, p.330

Garcia, Nikoli¢
Berkeley RISCY (73) OS8O

3_ ___
Stalls, misspeculation
2.67
m |deal CPI
2_5_ ___
212
2_ __
T I R T =
) .
1.23 CPI -
102 106
074 077 0.82
05__9_-44___ . B
NISEEEEEEERERE
> & 4L o ¥ & O
(3)6\ G:a"“\‘ar & S o \Q’iﬁ (‘P@ %\?QQ 60(0 @é@ § o 6\5
N N &K & © &
¥ Q @

P&H, p.330 S
Berkeley RISCV (74 OS8O

eic: "lron Law” of Processor Performance

CPI = Cycles Per Instruction

Can time Can count ‘ Can look up

Time = Instructions y¢ _ Cycles % Iime

Program Program Instruction Cycle
cpl= _Cycles = Tme . (Instrucﬂons X Time)

Instruction Program Program Cycle '

Berkeley RISCV (75 (OO

@ Pipelining and ISA Design

= RISC-V ISA designed for pipelining
o All instructions are 32-bits
= Easy to fetch and decode in one cycle
= Versus x86: 1- to 15-byte instructions
o Few and regular instruction formats
= Decode and read registers in one step
o Load/store addressing

* Calculate address in 37 stage, access memory in
4th stage

o Alignment of memory operands
= Memory access takes only one cycle

Garcia, Nikoli¢

Berkeley RISCV (76 OS8O

6ic

“And In conclusion...”

= We have built a processor!

o Capable of executing all RISC-V instructions in one cycle
each

= 5 Phases of execution
o |F, ID, EX, MEM, WB
o Not all instructions are active in all phases

= Controller specifies how to execute instructions
= Implemented as ROM or logic

= Pipelining improves performance

o But we must resolve hazards

Garcia, Nikoli¢

j!%gggkglﬁy RISC-V (77) .

