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v Forwarding: grab operand from pipeline stage,
rather than register file SR
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Needs to be here!

1w s2,20(s1) ﬂﬂr

and s4,s2,s5

or s8,s2,s6

add s9,s4,s2

aouanbas uononJsul

slt sl1l,s6,s7
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Data from memory is here
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/ 1-cycle stall

unavoidable!
Forward
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Load requires one-cycle pipeline stall
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1w s2,20(sl) M—HIEI:

and s4dnep,s5 ]

Stall  Repeat
and and
forward

BHEE

M Load requires one-cycle pipeline stall
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or s8,s2,s6

add s9,s4,s2

aouanbas uononJsul

slt sl1,s6,s7




= Slot after a load is called a load delay slot

o If that instruction uses the result of the load, then
the hardware will stall for one cycle

o Equivalent to inserting an explicit nop in the slot
= except the latter uses more code space
s Performance loss
" |dea:
s Put unrelated instruction into load delay slot
o No performance loss!

Garcia, Nikoli¢
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Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result in the next instr!
= RISC-V code for A[3]=A[0]+A[1l]; A[4]=A[0]1+A[2]

Original Order: Alternative:

1w tl1, 0(t0) lw tl, 0(t0)

1w (t0) )
)

Stalll w544 ©3, I3
t3, 12 (t0

(t4D8 (¢t
t5, tl, l add t5,

Co, I sw t5, 16(t0)
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Control
Hazards



beg t0,tl,Label M—HIEI:

sub t2,s0,t0

or t6,s0,t3

xor t5,tl,s0

sw s0,8(t3)

Executed regardless of
branch outcome!

Hh

Executed regardless o
branch outcome!

updated
BB

Two stall cycles after a branch!
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Observation

= |f branch not taken, then instructions fetched
sequentially after branch are correct

= |f branch or jump taken, then need to flush
incorrect instructions from pipeline by
converting to NOPs

Garcia, Nikoli¢
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beg t0,tl,Label M—HIEI:
B jlif 10
IM) [,] Re

sub t2,s0,t0

or t6,s0,t3

Label: xor t5,tl,s0
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l DMEM {

Taken branch!

Convert to nop

:’ DMEM { Convert to nop

DMEM PC
updated

i
BB
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Reducing Branch Penalties

= Every taken branch in simple pipeline costs 2
dead cycles

= To improve performance, use “branch
prediction” to guess which way branch will go
earlier in pipeline

= Only flush pipeline if branch prediction was
Incorrect

Garcia, Nikoli¢
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DMEM { Taken branch!
E Guess next PCI

R
BB
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beqg t0,tl,Label EI:
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Superscalar
Processors
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& Increasing Processor Performance

@@@@@

1. Clock rate
o Limited by technology and power dissipation
2. Pipelining
o “Overlap” instruction execution
o Deeper pipeline: 5 =>10 => 15 stages
= Less work per stage = shorter clock cycle

* But more potential for hazards (CPI > 1)

3. Multi-issue “superscalar” processor

Garcia, Nikoli¢
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@ Superscalar Processor

sEFreEw

= Multiple issue “superscalar”
o Replicate pipeline stages = multiple pipelines
o Start multiple instructions per clock cycle
o CPl< 1, so use Instructions Per Cycle (IPC)
o E.g., 4GHz 4-way multiple-issue
= 16 BIPS, peak CPI =0.25, peak IPC=4
o Dependencies reduce this in practice
= “Out-of-Order” execution

o Reorder instructions dynamically in hardware to
reduce impact of hazards

= (CS152 discusses these techniques!

Garcia, Nikoli¢
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Superscalar Processor

Instruction fetch
and decode unit

In-order issue

Y Y Y Y

Reservation | | Reservation Reservation || Reservation
station station A station station

Functional
units

Floating Load-
point store

Integer Integer Out-of-order execute

\

Commit In-order commit
unit

P&H, p.330
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eic: "lron Law” of Processor Performance

CPI = Cycles Per Instruction

Can time Can count ‘ Can look up

Time = Instructions y¢ _ Cycles % Iime

Program Program Instruction  Cycle
cpl= _Cycles = Tme . (Instrucﬂons X Time )

Instruction Program Program Cycle '
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@ Pipelining and ISA Design

= RISC-V ISA designed for pipelining
o All instructions are 32-bits
= Easy to fetch and decode in one cycle
= Versus x86: 1- to 15-byte instructions
o Few and regular instruction formats
= Decode and read registers in one step
o Load/store addressing

* Calculate address in 37 stage, access memory in
4th stage

o Alignment of memory operands
= Memory access takes only one cycle

Garcia, Nikoli¢
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“And In conclusion...”

= We have built a processor!

o Capable of executing all RISC-V instructions in one cycle
each

= 5 Phases of execution
o |F, ID, EX, MEM, WB
o Not all instructions are active in all phases

= Controller specifies how to execute instructions
= Implemented as ROM or logic

= Pipelining improves performance

o But we must resolve hazards

Garcia, Nikoli¢

j!%gggkglﬁy RISC-V (77) .



