

RISC-V (59)

Garcia, Nikolić

Data Hazard and Forwarding

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

5 5 5 5 5/9 9 9 9 9Value of s0

Forwarding: grab operand from pipeline stage,

rather than register file

add s0,t0,t1

or t6,s0,t3

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

RISC-V (60)

Garcia, Nikolić

Load Data Hazard

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

Load requires one-cycle pipeline stall

lw s2,20(s1)

or s8,s2,s6

add s9,s4,s2

and s4,s2,s5

slt s1,s6,s7

Data from memory is here
Needs to be here!

1-cycle stall

unavoidable!

Forward

Unaffected

RISC-V (61)

Garcia, Nikolić

Stall Pipeline

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

Load requires one-cycle pipeline stall

lw s2,20(s1)

or s8,s2,s6

and → nop

add s9,s4,s2

Stall Repeat

and and

forward

slt s1,s6,s7

and s4,s2,s5

RISC-V (62)

Garcia, Nikolić

 Slot after a load is called a load delay slot

 If that instruction uses the result of the load, then

the hardware will stall for one cycle

 Equivalent to inserting an explicit nop in the slot

 except the latter uses more code space

 Performance loss

 Idea:

 Put unrelated instruction into load delay slot

 No performance loss!

lwData Hazard

RISC-V (63)

Garcia, Nikolić

 Reorder code to avoid use of load result in the next instr!

 RISC-V code for A[3]=A[0]+A[1]; A[4]=A[0]+A[2]

Code Scheduling to Avoid Stalls

Original Order:

lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1, t2

sw t3, 12(t0)

lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

Alternative:

lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2

sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

Stall!

Stall!

9
 c

y
cl

e
s

7
 c

y
cl

e
s

RISC-V (65)

Garcia, Nikolić

Control Hazards

Two stall cycles after a branch!

beq t0,t1,Label

or t6,s0,t3

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

Executed regardless of

branch outcome!

Executed regardless of

branch outcome!

PC

updated

RISC-V (66)

Garcia, Nikolić

 If branch not taken, then instructions fetched

sequentially after branch are correct

 If branch or jump taken, then need to flush

incorrect instructions from pipeline by

converting to NOPs

Observation

RISC-V (67)

Garcia, Nikolić

Kill Instructions after Branch if Taken

beq t0,t1,Label

or t6,s0,t3

Label: xor t5,t1,s0

sub t2,s0,t0

Taken branch!

Convert to nop

PC

updated

Convert to nop

RISC-V (68)

Garcia, Nikolić

 Every taken branch in simple pipeline costs 2

dead cycles

 To improve performance, use “branch

prediction” to guess which way branch will go

earlier in pipeline

 Only flush pipeline if branch prediction was

incorrect

Reducing Branch Penalties

RISC-V (69)

Garcia, Nikolić

Branch Prediction

beq t0,t1,Label

Label :…

Taken branch!

Guess next PC!

Check

guess

RISC-V (71)

Garcia, Nikolić

1. Clock rate

 Limited by technology and power dissipation

2. Pipelining

 “Overlap” instruction execution

 Deeper pipeline: 5 => 10 => 15 stages

 Less work per stage shorter clock cycle

 But more potential for hazards (CPI > 1)

3. Multi-issue “superscalar” processor

Increasing Processor Performance

RISC-V (72)

Garcia, Nikolić

 Multiple issue “superscalar”

 Replicate pipeline stages ⇒ multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 Dependencies reduce this in practice

 “Out-of-Order” execution

 Reorder instructions dynamically in hardware to
reduce impact of hazards

 CS152 discusses these techniques!

Superscalar Processor

RISC-V (73)

Garcia, Nikolić

P&H, p.330

Superscalar Processor

RISC-V (74)

Garcia, Nikolić
P&H, p.330

Benchmark: CPI of i7

CPI = 1

RISC-V (75)

Garcia, Nikolić

“Iron Law” of Processor Performance

Time = Instructions Cycles Time

Program Program Instruction Cycle

CPI = Cycles Per Instruction

× ×

Can time Can count Can look up

CPI = Cycles = Time Instructions Time

Instruction Program Program Cycle
()÷ ×

RISC-V (76)

Garcia, Nikolić

 RISC-V ISA designed for pipelining

 All instructions are 32-bits

 Easy to fetch and decode in one cycle

 Versus x86: 1- to 15-byte instructions

 Few and regular instruction formats

 Decode and read registers in one step

 Load/store addressing

 Calculate address in 3rd stage, access memory in
4th stage

 Alignment of memory operands

 Memory access takes only one cycle

Pipelining and ISA Design

RISC-V (77)

Garcia, Nikolić

 We have built a processor!

 Capable of executing all RISC-V instructions in one cycle

each

 5 Phases of execution

 IF, ID, EX, MEM, WB

 Not all instructions are active in all phases

 Controller specifies how to execute instructions

 Implemented as ROM or logic

 Pipelining improves performance

 But we must resolve hazards

“And In conclusion…”

