

RISC-V (59)

Garcia, Nikolić

Data Hazard and Forwarding

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

5 5 5 5 5/9 9 9 9 9Value of s0

Forwarding: grab operand from pipeline stage,

rather than register file

add s0,t0,t1

or t6,s0,t3

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

RISC-V (60)

Garcia, Nikolić

Load Data Hazard

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

Load requires one-cycle pipeline stall

lw s2,20(s1)

or s8,s2,s6

add s9,s4,s2

and s4,s2,s5

slt s1,s6,s7

Data from memory is here
Needs to be here!

1-cycle stall

unavoidable!

Forward

Unaffected

RISC-V (61)

Garcia, Nikolić

Stall Pipeline

in
s
tru

c
tio

n
 s

e
q
u
e
n
c
e

Load requires one-cycle pipeline stall

lw s2,20(s1)

or s8,s2,s6

and → nop

add s9,s4,s2

Stall Repeat

and and

forward

slt s1,s6,s7

and s4,s2,s5

RISC-V (62)

Garcia, Nikolić

 Slot after a load is called a load delay slot

 If that instruction uses the result of the load, then

the hardware will stall for one cycle

 Equivalent to inserting an explicit nop in the slot

 except the latter uses more code space

 Performance loss

 Idea:

 Put unrelated instruction into load delay slot

 No performance loss!

lwData Hazard

RISC-V (63)

Garcia, Nikolić

 Reorder code to avoid use of load result in the next instr!

 RISC-V code for A[3]=A[0]+A[1]; A[4]=A[0]+A[2]

Code Scheduling to Avoid Stalls

Original Order:

lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1, t2

sw t3, 12(t0)

lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

Alternative:

lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2

sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

Stall!

Stall!

9
 c

y
cl

e
s

7
 c

y
cl

e
s

RISC-V (65)

Garcia, Nikolić

Control Hazards

Two stall cycles after a branch!

beq t0,t1,Label

or t6,s0,t3

xor t5,t1,s0

sub t2,s0,t0

sw s0,8(t3)

Executed regardless of

branch outcome!

Executed regardless of

branch outcome!

PC

updated

RISC-V (66)

Garcia, Nikolić

 If branch not taken, then instructions fetched

sequentially after branch are correct

 If branch or jump taken, then need to flush

incorrect instructions from pipeline by

converting to NOPs

Observation

RISC-V (67)

Garcia, Nikolić

Kill Instructions after Branch if Taken

beq t0,t1,Label

or t6,s0,t3

Label: xor t5,t1,s0

sub t2,s0,t0

Taken branch!

Convert to nop

PC

updated

Convert to nop

RISC-V (68)

Garcia, Nikolić

 Every taken branch in simple pipeline costs 2

dead cycles

 To improve performance, use “branch

prediction” to guess which way branch will go

earlier in pipeline

 Only flush pipeline if branch prediction was

incorrect

Reducing Branch Penalties

RISC-V (69)

Garcia, Nikolić

Branch Prediction

beq t0,t1,Label

Label :…

Taken branch!

Guess next PC!

Check

guess

RISC-V (71)

Garcia, Nikolić

1. Clock rate

 Limited by technology and power dissipation

2. Pipelining

 “Overlap” instruction execution

 Deeper pipeline: 5 => 10 => 15 stages

 Less work per stage  shorter clock cycle

 But more potential for hazards (CPI > 1)

3. Multi-issue “superscalar” processor

Increasing Processor Performance

RISC-V (72)

Garcia, Nikolić

 Multiple issue “superscalar”

 Replicate pipeline stages ⇒ multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 Dependencies reduce this in practice

 “Out-of-Order” execution

 Reorder instructions dynamically in hardware to
reduce impact of hazards

 CS152 discusses these techniques!

Superscalar Processor

RISC-V (73)

Garcia, Nikolić

P&H, p.330

Superscalar Processor

RISC-V (74)

Garcia, Nikolić
P&H, p.330

Benchmark: CPI of i7

CPI = 1

RISC-V (75)

Garcia, Nikolić

“Iron Law” of Processor Performance

Time = Instructions Cycles Time

Program Program Instruction Cycle

CPI = Cycles Per Instruction

× ×

Can time Can count Can look up

CPI = Cycles = Time Instructions Time

Instruction Program Program Cycle
()÷ ×

RISC-V (76)

Garcia, Nikolić

 RISC-V ISA designed for pipelining

 All instructions are 32-bits

 Easy to fetch and decode in one cycle

 Versus x86: 1- to 15-byte instructions

 Few and regular instruction formats

 Decode and read registers in one step

 Load/store addressing

 Calculate address in 3rd stage, access memory in
4th stage

 Alignment of memory operands

 Memory access takes only one cycle

Pipelining and ISA Design

RISC-V (77)

Garcia, Nikolić

 We have built a processor!

 Capable of executing all RISC-V instructions in one cycle

each

 5 Phases of execution

 IF, ID, EX, MEM, WB

 Not all instructions are active in all phases

 Controller specifies how to execute instructions

 Implemented as ROM or logic

 Pipelining improves performance

 But we must resolve hazards

“And In conclusion…”

