

UC Berkeley Teaching Professor Dan Garcia

Great Ideas in Computer Architecture (a.k.a. Machine Structures)

cs61c.org

UC Berkeley Professor Bora Nikolić

Binary Prefix

physics.nist.gov/cuu/Units/binary.html Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

- Common use prefixes (all SI, except K [= k in SI])
- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers & Telecommunications are the only computing groups that use SI factors
 - What is advertised as a 1 TB drive actually holds about 90% of what you expect

Name	Abbr	Factor	SI size
Kilo	K	$2^{10} = 1,024$	$10^3 = 1,000$
Mega	Μ	$2^{20} = 1,048,576$	$10^6 = 1,000,000$
Giga	G	2 ³⁰ = 1,073,741,824	$10^9 = 1,000,000,000$
Tera	Т	2 ⁴⁰ = 1,099,511,627,776	$10^{12} = 1,000,000,000$
Peta	Р	2 ⁵⁰ = 1,125,899,906,842,624	$10^{15} = 1,000,000,000$
Exa	E	2 ⁶⁰ = 1,152,921,504,606,846,976	$10^{18} = 1,000,000,000$
Zetta	Z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	$10^{21} = 1,000,000,000$
Yotta	Y	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176	$10^{24} = 1,000,000,0$

A 1 Mbit/s connection transfers 10⁶ bps.

000,000,000,000,000,000

00,000,000,000,000

00,000,000,000

00,000,000

000.000

000

en.wikipedia.org/wiki/Binary prefix kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

IEC Standard Prefixes [only to exbi officially]

Name	Abbr	Factor
kibi	Ki	$2^{10} = 1,024$
mebi	Mi	$2^{20} = 1,048,576$
gibi	Gi	$2^{30} = 1,073,741,824$
tebi	Ti	2 ⁴⁰ = 1,099,511,627,776
pebi	Pi	2 ⁵⁰ = 1,125,899,906,842,624
exbi	Ε	$2^{60} = 1,152,921,504,606,846,976$
zebi	Zi	2 ⁷⁰ = 1,180,591,620,717,411,303,424
yobi	Yi	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
- Names come from shortened versions of the original SI prefixes (same pronunciation) and *bi* is short for "binary", but pronounced "bee" :-(
- Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.

Caches I (4)

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

- Kid meets giant Texas people exercising zen-like yoga. Polf O 1.
- Kind men give ten percent extra, zestfully, youthfully. Hava E 2.
- 3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. – Gary M
- Kindness means giving, teaching, permeating excess zeal yourself. Hava E 4.
- 5. Killing messengers gives terrible people exactly zero, yo
- Kindergarten means giving teachers perfect examples (of) zeal (&) youth 6.
- Kissing mediocre giraffes teaches people (to) expect zero (from) you 7.
- Kinky Mean Girls Teach People Exciting Zen Yoga 8.
- Kissing Mel Gibson, Teddy Pendergrass exclaimed: "Zesty, yo!" Dan G 9.
- 10. Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

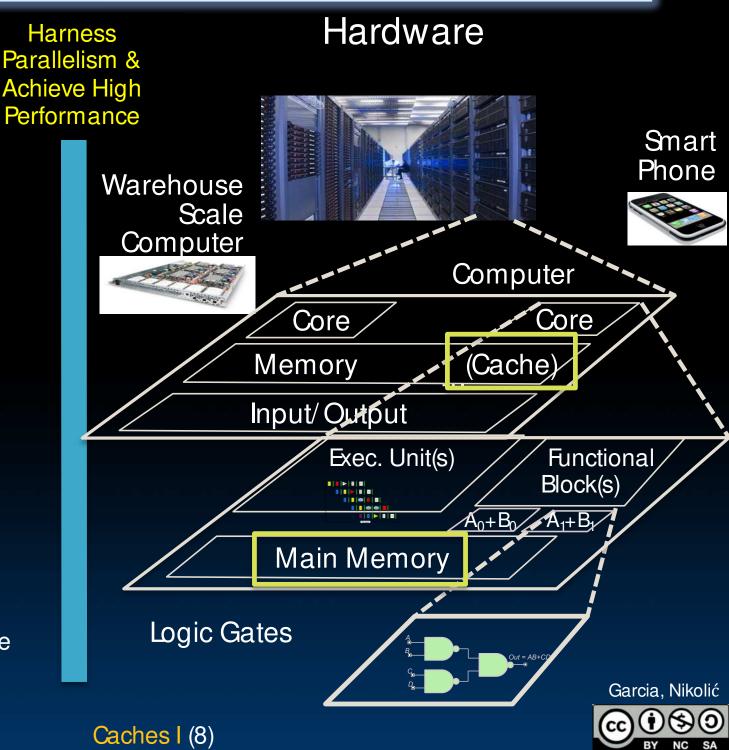
The way to remember #s

- What is 2³⁴? How many bits to address (I.e., what's **ceil** $\log_2 = \log of$) 2.5 TiB?
- Answer! 2[×]^Y means... $Y=0 \implies 1$ X=0 ⇒ ---- $X=1 \Longrightarrow kibi \sim 10^3 \quad Y=1 \Longrightarrow 2$ $X=2 \Longrightarrow \text{mebi} \sim 10^6 \text{ Y}=2 \Longrightarrow 4$ $\begin{array}{c} x = 2 \implies \text{mebr ~10} \\ X = 3 \implies \text{gibi ~10}^9 \\ Y = 4 \implies 16 \end{array}$ $X=4 \Rightarrow tebi \sim 10^{12}$ $Y=5 \Rightarrow 32$ $X=5 \Longrightarrow \text{pebi} \sim 10^{15} \text{ Y}=6 \Longrightarrow 64$ $X=6 \Rightarrow exbi \sim 10^{18} Y=7 \Rightarrow 128$ $X=7 \Longrightarrow zebi \sim 10^{21}$ $Y=8 \Longrightarrow 256$ $X=8 \Rightarrow$ yobi ~10²⁴ $Y=9 \Rightarrow 512$

Library Analogy

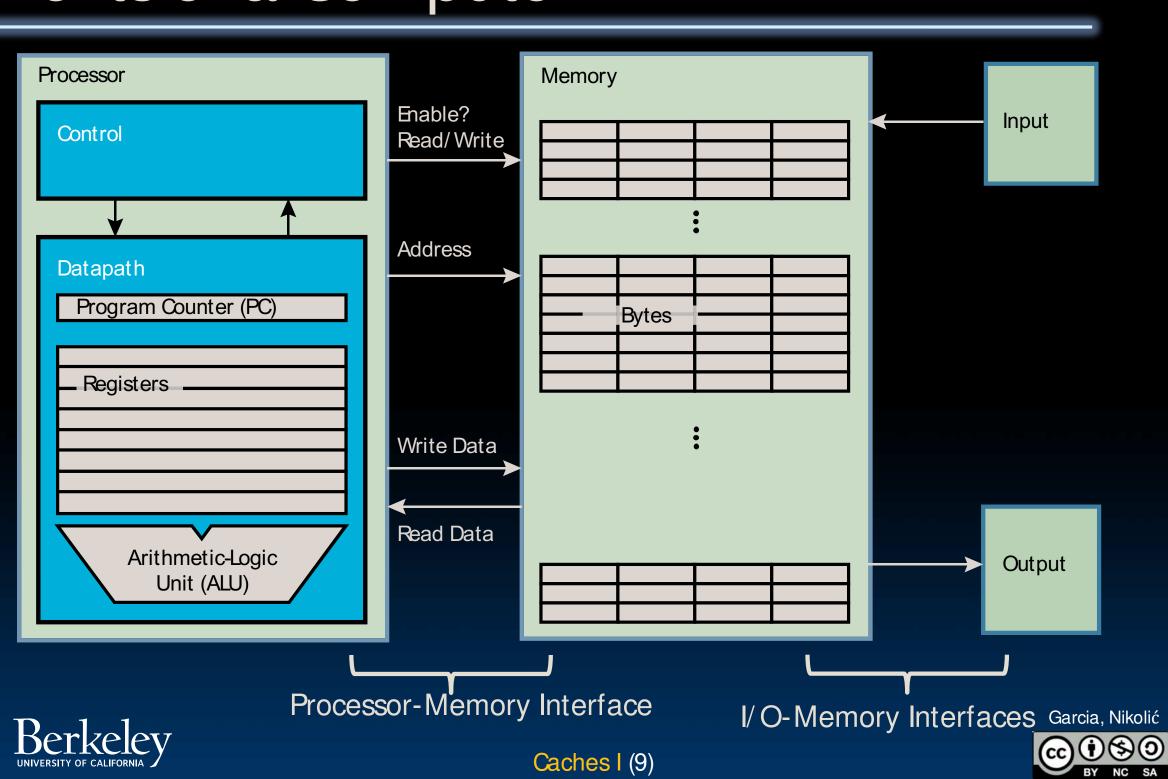
New-School Machine Structures

Software Parallel Pequests Assigned to computer e.g., Search "Cats"


Parallel Threads

Assigned to core e.g., Lookup, Ads

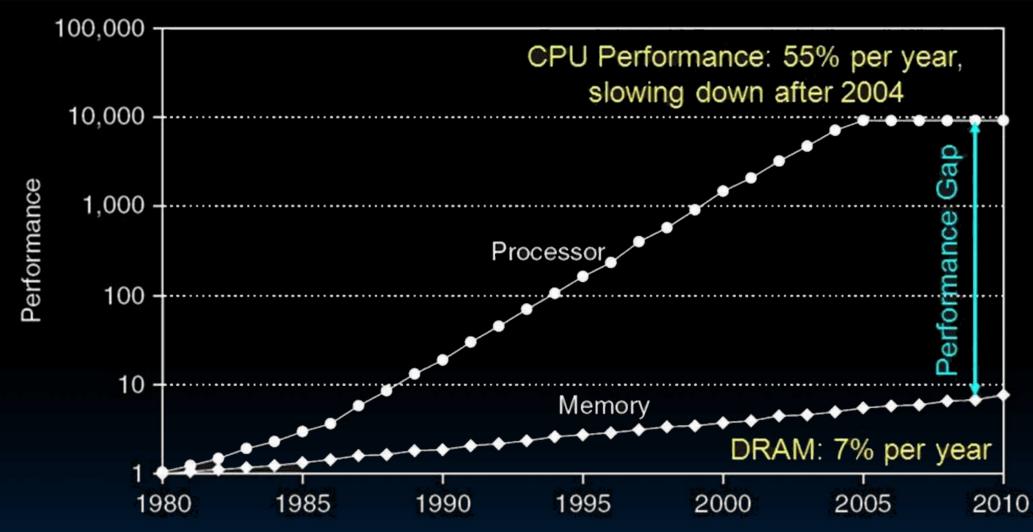
Parallel Instructions >1 instruction @one time e.g., 5 pipelined instructions Parallel Data >1 data item @one time e.g., Add of 4 pairs of words


Hardware descriptions All gates work in parallel at same time


CS 61C

Components of a Computer

Why are Large Memories Slow? Library Analogy


Caches I (10)

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access 2020 microprocessor executes ~ 1000 instructions in same time as DRAM access Slow DRAM access has disastrous impact on CPU performance!

Caches I (11)

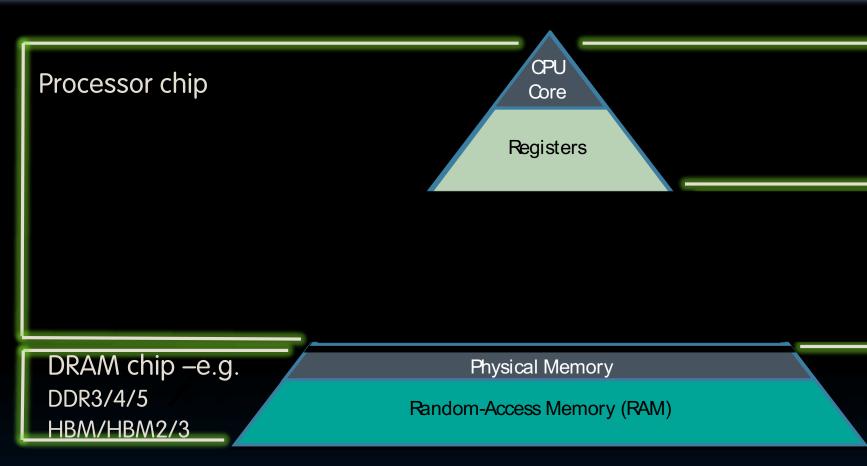
Memory Hierarchy

What To Do: Library Analogy

- Write a report using library books
 E.g., works of J.D. Salinger
- Go to library, look up books, fetch from stacks, and place on desk in library
- If need more, check out, keep on desk
 - But don't return earlier books since might need them
- You hope this collection of ~10 books on desk enough to write report, despite 10 being only 0.00001% of books in UC Berkeley libraries

Memory Caching

- Mismatch between processor and memory speeds leads us to add a new level... Introducing a "memory cache"
- Implemented with same IC processing technology as the CPU (usually integrated on same chip)
 - faster but more expensive than DRAM memory.
- Cache is a copy of a subset of main memory
- Most processors have separate caches for instructions and data.

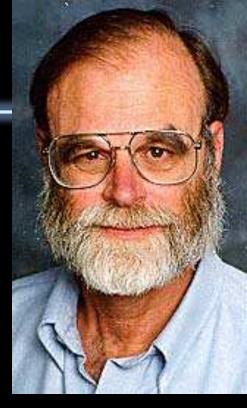


Caches I (14)

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast Extremely expensive Tiny capacity

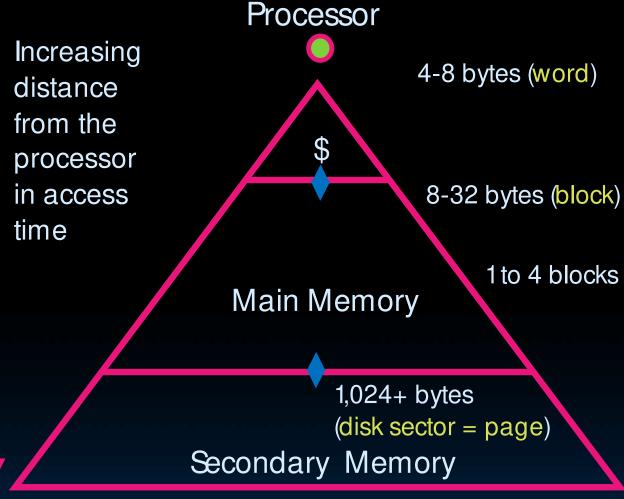
Fast Priced reasonably Medium capacity



Jim Gray's Storage Latency Analogy: How Far Away is the Data?

Caches I (16)

Jim Gray Turing Award B.S. Cal 1966 Ph.D. Cal 1969

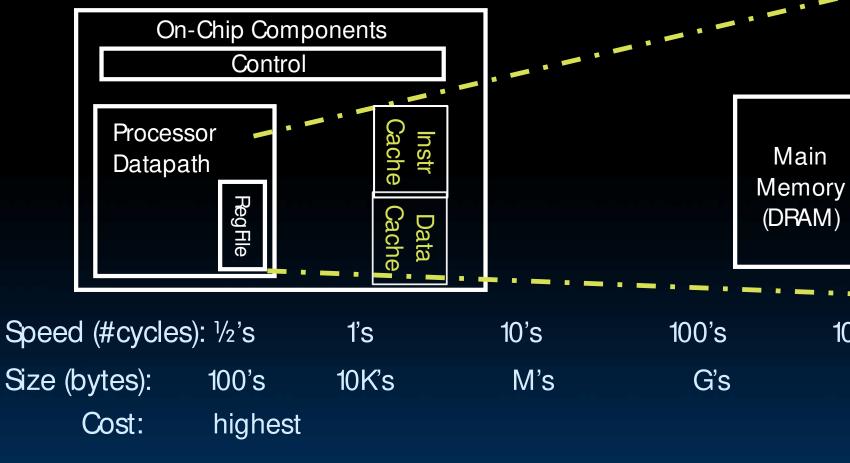

1.5 hr

2 min 1 min

Characteristics of the Memory Hierarchy

(Pelative) size of the memory at each level

Caches I (17)


1 to 4 blocks

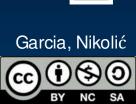
Inclusivewhat is in L1\$ is a subset what is in MM that is a subset of is in SM

The Trick: present processor with as much memory as is available in the *cheapest* technology at the speed offered by the *fastest* technology

Caches I (18)

Secondary Memory (Disk Or Hash)

10,000's Ts lowest


Memory Hierarchy

- If level closer to Processor, it is:
 - Smaller
 - Faster
 - More expensive
 - subset of lower levels (contains most recently used data)
- Lowest Level (usually disk=HDD/SSD) contains all available data (does it go beyond the disk?)
- Memory Hierarchy presents the processor with the illusion of a very large & fast memory

tly used data) ontains all isk?) or with the

Locality, Design, Management

Memory Hierarchy Basis

- Cache contains copies of data in memory that are being used.
- Memory contains copies of data on disk that are being used.
- Caches work on the principles of temporal and spatial locality.
 - Temporal locality (locality in time): If we use it now, chances are we'll want to use it again soon.
 - Spatial locality (locality in space): If we use a piece of memory, chances are we'll use the neighboring pieces soon.

What to Do About Locality

Temporal Locality

- If a memory location is referenced then it will tend to be referenced again soon
- \Rightarrow Keep most recently accessed data items closer to the processor

Spatial Locality

- If a memory location is referenced, the locations with nearby addresses will tend to be referenced soon
- \Rightarrow Move blocks consisting of contiguous words closer to the processor

Cache Design

- How do we organize cache?
- Where does each memory address map to?
 - Remember that cache is subset of memory, so multiple memory addresses map to the same cache location.)
- How do we know which elements are in cache?
- How do we quickly locate them?

Caches I (23)

How is the Hierarchy Managed?

- registers \leftrightarrow memory
 - By compiler (or assembly level programmer)

cache \leftrightarrow main memory

- By the cache controller hardware
- main memory \leftrightarrow disks (secondary) storage)
 - By the operating system (virtual memory)
 - Virtual to physical address mapping assisted by the hardware ('translation lookaside buffer' or TLB)

By the programmer (files) Also a type of cache

Caches I (24)

Garcia, Nikolić

"And in Conclusion..."

Caches provide an illusion to the processor that the memory is infinitely large and infinitely fast

