
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Caches I

Caches I (3)

Garcia, Nikoli�

§ Common use prefixes (all SI, except K [= k in SI])

§ Confusing! Common usage of “kilobyte” means
1024 bytes, but the “correct” SI value is 1000 bytes

§ Hard Disk manufacturers & Telecommunications are the only computing
groups that use SI factors
ú What is advertised as a 1 TB drive actually holds about 90% of what you expect

ú A 1 Mbit/s connection transfers 106 bps.

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

Name Abbr Factor SI size

Kilo K 210 = 1,024 103 = 1,000

Mega M 220 = 1,048,576 106 = 1,000,000

Giga G 230 = 1,073,741,824 109 = 1,000,000,000

Tera T 240 = 1,099,511,627,776 1012 = 1,000,000,000,000

Peta P 250 = 1,125,899,906,842,624 1015 = 1,000,000,000,000,000

Exa E 260 = 1,152,921,504,606,846,976 1018 = 1,000,000,000,000,000,000

Zetta Z 270 = 1,180,591,620,717,411,303,424 1021 = 1,000,000,000,000,000,000,000

Yotta Y 280 = 1,208,925,819,614,629,174,706,176 1024 = 1,000,000,000,000,000,000,000,000

physics.nist.gov/cuu/Units/binary.html

Caches I (4)

Garcia, Nikoli�

§ IEC Standard Prefixes [only to exbi officially]

§ International Electrotechnical Commission (IEC) in 1999
introduced these to specify binary quantities.

§ Names come from shortened versions of the original SI
prefixes (same pronunciation) and bi is short for “binary”, but
pronounced “bee” :-(

§ Now SI prefixes only have their base-10 meaning and never
have a base-2 meaning.

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

Name Abbr Factor

kibi Ki 210 = 1,024

mebi Mi 220 = 1,048,576

gibi Gi 230 = 1,073,741,824

tebi Ti 240 = 1,099,511,627,776

pebi Pi 250 = 1,125,899,906,842,624

exbi Ei 260 = 1,152,921,504,606,846,976

zebi Zi 270 = 1,180,591,620,717,411,303,424

yobi Yi 280 = 1,208,925,819,614,629,174,706,176

en.wikipedia.org/wiki/Binary_prefix

Caches I (5)

Garcia, Nikoli�

1. Kid meets giant Texas people exercising zen-like yoga. – Rolf O

2. Kind men give ten percent extra, zestfully, youthfully. – Hava E

3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. – Gary M

4. Kindness means giving, teaching, permeating excess zeal yourself. – Hava E

5. Killing messengers gives terrible people exactly zero, yo

6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7. Kissing mediocre giraffes teaches people (to) expect zero (from) you

8. Kinky Mean Girls Teach People Exciting Zen Yoga

9. Kissing Mel Gibson, Teddy Pendergrass exclaimed: “Zesty, yo!” – Dan G

10. Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

Caches I (6)

Garcia, Nikoli�

§ What is 234? How many bits to address (I.e., what’s
ceil log

2
= lg of) 2.5 TiB?

§ Answer! 2XY means…
X=0 Þ ---

X=1 Þ kibi ~103

X=2 Þmebi ~106

X=3 Þ gibi ~109

X=4 Þ tebi ~1012

X=5 Þ pebi ~1015

X=6 Þ exbi ~1018

X=7 Þ zebi ~1021

X=8 Þ yobi ~1024

The way to remember #s

Y=0Þ 1
Y=1 Þ 2
Y=2 Þ 4
Y=3 Þ 8
Y=4 Þ 16
Y=5 Þ 32
Y=6 Þ 64
Y=7 Þ 128
Y=8 Þ 256
Y=9 Þ 512

MEMORIZE!
þ

Caches I (8)

Garcia, Nikoli�

New-School Machine Structures

Parallel Requests
Assigned to computer

e.g., Search “Cats”

Parallel Threads
Assigned to core e.g., Lookup, Ads

Parallel Instructions
>1 instruction @ one time

e.g., 5 pipelined instructions

Parallel Data
>1 data item @ one time

e.g., Add of 4 pairs of words

Hardware descriptions
All gates work in parallel at same time

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Logic Gates

Core Core

…Memory (Cache)

Input/ Output

Computer

Main Memory

Exec. Unit(s) Functional
Block(s)

A0+B0 A1+B1

Out = AB+CD

A

B

C

D

Harness
Parallelism &
Achieve High
Performance

Caches I (9)

Garcia, Nikoli�

Components of a Computer

Processor-Memory Interface I/ O-Memory Interfaces

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Enable?

Read/ Write

Address

Write Data

Read Data

Input

Output

Bytes

Caches I (10)

Garcia, Nikoli�

§ Time to find a book in a
large library
ú Search a large card catalog –

(mapping title/author to index
number)

ú Round-trip time to walk to the
stacks and retrieve the desired
book

§ Larger libraries worsen both
delays

§ Electronic memories have
same issue, plus the
technologies used to store a
bit slow down as density
increases (e.g., SRAM vs.
DRAM vs. Disk)

Why are Large Memories Slow? Library Analogy

What we want is a large, yet fast memory!

Caches I (11)

Garcia, Nikoli�

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access

2020 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance! þ

Caches I (13)

Garcia, Nikoli�

§ Write a report using library books

ú E.g., works of J.D. Salinger

§ Go to library, look up books, fetch from
stacks, and place on desk in library

§ If need more, check out, keep on desk

ú But don’t return earlier books since might
need them

§ You hope this collection of ~10 books
on desk enough to write report, despite

10 being only 0.00001% of books in UC
Berkeley libraries

What To Do: Library Analogy

Caches I (14)

Garcia, Nikoli�

§ Mismatch between processor and memory

speeds leads us to add a new level…

ú Introducing a “memory cache”

§ Implemented with same IC processing

technology as the CPU (usually integrated on

same chip)

ú faster but more expensive than DRAM memory.

§ Cache is a copy of a subset of main memory

§ Most processors have separate caches for

instructions and data.

Memory Caching

Caches I (15)

Garcia, Nikoli�

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g.
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Core

Faster

Expensive

Small capacity

Caches I (16)

Garcia, Nikoli�

Jim Gray’s Storage Latency Analogy:

How Far Away is the Data?

Jim Gray

Turing Award
B.S. Cal 1966

Ph.D. Cal 1969

Registers
On-chip cache

Memory

1

2

100
Sacramento

This Room

My Head

1.5 hr

1 min

2 min

[ns]

Caches I (17)

Garcia, Nikoli�

Characteristics of the Memory Hierarchy

Increasing

distance

from the

processor

in access

time

$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive–

what is in

L1$ is a

subset

what is in

MM that is

a subset of

is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes

(disk sector = page)

8-32 bytes (block)

Caches I (18)

Garcia, Nikoli�

Typical Memory Hierarchy

§ The Trick: present processor with as much memory
as is available in the cheapest technology at the

speed offered by the fastest technology

Control

Processor

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

R
e
g

File

Main

Memory

(DRAM)

D
a

ta

C
a

ch
e

In
str

C
a

ch
e

Speed (#cycles): ½’s 1’s 10’s 100’s 10,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

Cost: highest lowest

Caches I (19)

Garcia, Nikoli�

§ If level closer to Processor, it is:

ú Smaller

ú Faster

ú More expensive

ú subset of lower levels (contains most recently used data)

§ Lowest Level (usually disk=HDD/SSD) contains all

available data (does it go beyond the disk?)

§ Memory Hierarchy presents the processor with the
illusion of a very large & fast memory

Memory Hierarchy

þ

Caches I (21)

Garcia, Nikoli�

§ Cache contains copies of data in memory

that are being used.

§ Memory contains copies of data on disk

that are being used.

§ Caches work on the principles of temporal

and spatial locality.

ú Temporal locality (locality in time): If we use it now,
chances are we’ll want to use it again soon.

ú Spatial locality (locality in space): If we use a piece
of memory, chances are we’ll use the neighboring
pieces soon.

Memory Hierarchy Basis

Caches I (22)

Garcia, Nikoli�

§ Temporal Locality
ú If a memory location is referenced then it will

tend to be referenced again soon
Þ Keep most recently accessed data items closer

to the processor

§ Spatial Locality
ú If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon
ÞMove blocks consisting of contiguous words

closer to the processor

What to Do About Locality

Caches I (23)

Garcia, Nikoli�

§ How do we organize cache?

§ Where does each memory address

map to?

ú (Remember that cache is subset of memory,
so multiple memory addresses map to the
same cache location.)

§ How do we know which elements are
in cache?

§ How do we quickly locate them?

Cache Design

Caches I (24)

Garcia, Nikoli�

§ registers « memory
ú By compiler (or assembly level programmer)

§ cache « main memory
ú By the cache controller hardware

§ main memory « disks (secondary
storage)
ú By the operating system (virtual memory)

ú Virtual to physical address mapping assisted by
the hardware (‘translation lookaside buffer’ or
TLB)

ú By the programmer (files)

How is the Hierarchy Managed?

Also a type of cache

Caches I (25)

Garcia, Nikoli�

§ Caches provide an illusion to the
processor that the memory is
infinitely large and infinitely fast

<And in Conclusion…=

þ

