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§ Common use prefixes (all SI, except K [= k in SI])

§ Confusing! Common usage of “kilobyte” means 
1024 bytes, but the “correct” SI value is 1000 bytes

§ Hard Disk manufacturers & Telecommunications are the only computing 
groups that use SI factors
ú What is advertised as a 1 TB drive actually holds about 90% of what you expect

ú A 1 Mbit/s connection transfers 106 bps.

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

Name Abbr Factor SI size

Kilo K 210 = 1,024 103   = 1,000

Mega M 220 = 1,048,576 106   = 1,000,000

Giga G 230 = 1,073,741,824 109 = 1,000,000,000

Tera T 240 = 1,099,511,627,776 1012 = 1,000,000,000,000

Peta P 250 = 1,125,899,906,842,624 1015 = 1,000,000,000,000,000

Exa E 260 = 1,152,921,504,606,846,976 1018 = 1,000,000,000,000,000,000

Zetta Z 270 = 1,180,591,620,717,411,303,424 1021 = 1,000,000,000,000,000,000,000

Yotta Y 280 = 1,208,925,819,614,629,174,706,176 1024 = 1,000,000,000,000,000,000,000,000

physics.nist.gov/cuu/Units/binary.html
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§ IEC Standard Prefixes [only to exbi officially]

§ International Electrotechnical Commission (IEC) in 1999 
introduced these to specify binary quantities.

§ Names come from shortened versions of the original SI 
prefixes (same pronunciation) and bi is short for “binary”, but 
pronounced “bee” :-(

§ Now SI prefixes only have their base-10 meaning and never 
have a base-2 meaning.

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

Name Abbr Factor

kibi Ki 210 = 1,024

mebi Mi 220 = 1,048,576

gibi Gi 230 = 1,073,741,824

tebi Ti 240 = 1,099,511,627,776

pebi Pi 250 = 1,125,899,906,842,624

exbi Ei 260 = 1,152,921,504,606,846,976

zebi Zi 270 = 1,180,591,620,717,411,303,424

yobi Yi 280 = 1,208,925,819,614,629,174,706,176

en.wikipedia.org/wiki/Binary_prefix
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1. Kid meets giant Texas people exercising zen-like yoga. – Rolf O

2. Kind men give ten percent extra, zestfully, youthfully. – Hava E

3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. – Gary M

4. Kindness means giving, teaching, permeating excess zeal yourself. – Hava E

5. Killing messengers gives terrible people exactly zero, yo

6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7. Kissing mediocre giraffes teaches people (to) expect zero (from) you

8. Kinky Mean Girls Teach People Exciting Zen Yoga

9. Kissing Mel Gibson, Teddy Pendergrass exclaimed: “Zesty, yo!” – Dan G

10. Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta
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§ What is 234? How many bits to address (I.e., what’s 
ceil log

2
= lg of ) 2.5 TiB?

§ Answer! 2XY means…
X=0 Þ ---

X=1 Þ kibi ~103

X=2 Þmebi ~106

X=3 Þ gibi ~109

X=4 Þ tebi ~1012

X=5 Þ pebi ~1015

X=6 Þ exbi ~1018

X=7 Þ zebi ~1021

X=8 Þ yobi ~1024

The way to remember #s

Y=0Þ 1
Y=1 Þ 2
Y=2 Þ 4
Y=3 Þ 8
Y=4 Þ 16
Y=5 Þ 32
Y=6 Þ 64
Y=7 Þ 128
Y=8 Þ 256
Y=9 Þ 512

MEMORIZE!
þ
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New-School Machine Structures

Parallel Requests
Assigned to computer

e.g., Search “Cats”

Parallel Threads
Assigned to core e.g., Lookup, Ads

Parallel Instructions
>1 instruction @ one time

e.g., 5 pipelined instructions

Parallel Data
>1 data item @ one time

e.g., Add of 4 pairs of words

Hardware descriptions
All gates work in parallel at same time

Smart
Phone

Warehouse 
Scale 

Computer

Software               Hardware

Logic Gates

Core Core

…Memory               (Cache)

Input/ Output

Computer

Main Memory

Exec. Unit(s) Functional
Block(s)

A0+B0 A1+B1

Out = AB+CD

A

B

C

D

Harness
Parallelism &
Achieve High
Performance
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Components of a Computer

Processor-Memory Interface I/ O-Memory Interfaces

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Enable?

Read/ Write

Address

Write Data

Read Data

Input

Output

Bytes
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§ Time to find a book in a 
large library
ú Search a large card catalog –

(mapping title/author to index 
number)

ú Round-trip time to walk to the 
stacks and retrieve the desired 
book

§ Larger libraries worsen both 
delays

§ Electronic memories have 
same issue, plus the 
technologies used to store a 
bit slow down as density 
increases (e.g., SRAM vs. 
DRAM vs. Disk)

Why are Large Memories Slow? Library Analogy

What we want is a large, yet fast memory! 



Caches I (11)

Garcia, Nikoli�

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access

2020 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance! þ
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§ Write a report using library books

ú E.g., works of J.D. Salinger

§ Go to library, look up books, fetch from 
stacks, and place on desk in library

§ If need more, check out, keep on desk

ú But don’t return earlier books since might 
need them

§ You hope this collection of ~10 books 
on desk enough to write report, despite 

10 being only 0.00001% of books in UC 
Berkeley libraries

What To Do: Library Analogy
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§ Mismatch between processor and memory 

speeds leads us to add a new level…

ú Introducing a “memory cache”

§ Implemented with same IC processing 

technology as the CPU (usually integrated on 

same chip)

ú faster but more expensive than DRAM memory.

§ Cache is a copy of a subset of main memory

§ Most processors have separate caches for 

instructions and data.

Memory Caching
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Great Idea #3: Principle of Locality /  Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g. 
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Core

Faster

Expensive

Small capacity
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Jim Gray’s Storage Latency Analogy:  

How Far Away is the Data?

Jim Gray

Turing Award
B.S. Cal 1966

Ph.D. Cal 1969

Registers
On-chip cache

Memory 

1

2

100
Sacramento

This Room

My Head

1.5 hr

1 min

2 min

[ns]
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Characteristics of the Memory Hierarchy

Increasing 

distance 

from the 

processor 

in access 

time

$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

Inclusive–

what is in 

L1$ is a 

subset 

what is in 

MM that is 

a subset of 

is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes

(disk sector = page)

8-32 bytes (block)
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Typical Memory Hierarchy

§ The Trick: present processor with as much memory 
as is available in the cheapest technology at the 

speed offered by the fastest technology

Control

Processor

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

R
e
g

File

Main

Memory

(DRAM)

D
a

ta

C
a

ch
e

In
str

C
a

ch
e

Speed (#cycles): ½’s             1’s                  10’s                  100’s               10,000’s

Size (bytes):       100’s          10K’s                 M’s                    G’s                    T’s

Cost:         highest                                                                               lowest
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§ If level closer to Processor, it is:

ú Smaller

ú Faster

ú More expensive

ú subset of lower levels (contains most recently used data)

§ Lowest Level (usually disk=HDD/SSD) contains all 

available data (does it go beyond the disk?)

§ Memory Hierarchy presents the processor with the 
illusion of a very large & fast memory

Memory Hierarchy

þ
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§ Cache contains copies of data in memory 

that are being used.

§ Memory contains copies of data on disk 

that are being used.

§ Caches work on the principles of temporal 

and spatial locality.

ú Temporal locality (locality in time): If we use it now, 
chances are we’ll want to use it again soon.

ú Spatial locality (locality in space): If we use a piece 
of memory, chances are we’ll use the neighboring 
pieces soon.

Memory Hierarchy Basis
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§ Temporal Locality
ú If a memory location is referenced then it will 

tend to be referenced again soon
Þ Keep most recently accessed data items closer 

to the processor

§ Spatial Locality
ú If a memory location is referenced, the locations 

with nearby addresses will tend to be referenced 
soon
ÞMove blocks consisting of contiguous words 

closer to the processor 

What to Do About Locality
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§ How do we organize cache?

§ Where does each memory address 

map to?

ú (Remember that cache is subset of memory, 
so multiple memory addresses map to the 
same cache location.)

§ How do we know which elements are 
in cache?

§ How do we quickly locate them?

Cache Design
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§ registers « memory
ú By compiler (or assembly level programmer)

§ cache « main memory
ú By the cache controller hardware

§ main memory « disks (secondary 
storage)
ú By the operating system (virtual memory)

ú Virtual to physical address mapping assisted by 
the hardware (‘translation lookaside buffer’ or 
TLB)

ú By the programmer (files)

How is the Hierarchy Managed?

Also a type of cache
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§ Caches provide an illusion to the 
processor that the memory is 
infinitely large and infinitely fast

<And in Conclusion…=

þ


