CICEIREEL

N
UC Berkel : UC Berkel
Teaching IrF’r?)feeyssor CO m p Uter ArCh |teCt ure Profersseo?y
Dan Garcia @.k.a. Machine Sructures) Bora Nikoli¢

Caches ||

Garcia, Nikoli¢ |
§E§£1§SR1N§Y cs6lc.org @

Direct Mapped
Caches

Direct-Mapped Cache (14)

= |n a direct-mapped cache, each
memory address is associated with
one possible block within the cache
= Therefore, we only need to look in a single

location in the cache for the data if it exists in
the cache

= Block is the unit of transfer between cache
and memory

Garcia, Nikoli¢

§E§£1§ER1N§Y Caches II (3) '

Direct-Mapped Cache (2/4)

Memory
Address Memory

Cache 4 Byte Direct
Mapped Cache

Block size = 1byte

Cache Location 0 can be
occupied by data from:

= Memory location 0, 4, 8, ...

a4 blocks = any memory
location that is multiple of 4

What if we wanted a block
to be bigger than one byte?

Garcia, Nikoli¢

Berkeley Caches Il @ QOO

TMMOUOW>OONOUIRWN—=O

Direct-Mapped Cache (2/4)

Memory
Address Memory

Cache 8-Byte Direct
Mapped Cache

3
Block size = 2 bytes

= When we ask for a byte, the
controller finds out the right block,
and loads it all!
= How does it know right block?
= How do we select the byte?

= Eg., Mem address 11101?

= How does it know WHICH colored
block it originated from?
o What do you do at baggage claim?

Garcia, Nikoli¢

Caches Il (5) ' ‘

Berkeley

UNIVERSITY OF CALIFORNIA

Direct-Mapped Cache (2/4)

Memory
Address Memory

Cache 8-Byte Direct
Index Mapped Cache with Tag

Block size = 2 bytes
= What should go in the tag?

= Do we need the entire
address?

- What do all these tags have in
common?

= What did we do with the
immediate when we were
branch addressing, always
count by bytes?
= Why not count by cache #7
o |t's useful to draw memory with
the same width as the block

Slze Garcia, Nikoli¢

Caches Il (6) "

Issues with Direct-Mapped

= Since multiple memory addresses map to same
cache index, how do we tell which one isin there?

= What if we have a block size > 1byte?
= Answer: divide memory address into three fields

0000

byte
oftset
within
block

Garcia, Nikoli¢

§S£1§ER1,§Y Caches li (7) '

Direct-Mapped Cache Terminology

= All fields are read as unsigned integers.

= |ndex

o specifies the cache index (which “row”/block of the cache
we should look in)

s (Offset

= once we've found correct block, specifies which byte
within the block we want

o the remaining bits after offset and index are determined;
these are used to distinguish between all the memory
addresses that map to the same location

Garcia, Nikoli¢

Berkeley Caches I @) QOO

AREA (cache size, B)
= HHGHT (# of blocks)
* WIDTH (size of one block, B/ block)

Tag Index Offset | WIDTH
(size of one block, B/ block)

2(H+VV) — 2H * 2W

HEGHT

(# of blocks) ARE_A
(cache size, B)

...................... Caches Il (9)

Direct Mapped
Example

sic: Direct-Mapped Cache Example (1/3)

= Suppose we have a 8B of data in a direct-
mapped cache with 2-byte blocks
o Sound familiar?

= Determine the size of the tag, index and
offset fields if using a 32-bit arch (RV32)

= Offset

o need to specify correct byte within a block
o block contains 2 bytes

= 2! bytes
o need 1 bit to specify correct byte

Garcia, Nikoli¢

légglggklgy Caches Il (M) '

Direct-Mapped Cache Example (2/3)

= |Index: (~index into an “array of blocks”)
= need to specify correct block in cache
o cache contains 8 B = 2° bytes
= block contains 2 B = 2! bytes
= # blocks/cache

= bytes/cache
bytes/block

23 bytes/cache
2! bytes/block

= 22 blocks/cache
o need 2 bits to specify this many blocks

Garcia, Nikoli¢

Berkeley Caches I 12 QOO

Direct-Mapped Cache Example (3/3)

= Tag: use remaining bits as tag

o tag length = addr length — offset - index
=32-1-2bits
= 29 bits

o 50 tag is leftmost 29 bits of memory address

= Tag can be thought of as “cache number”

= Why not full 32-bit address as tag?

o All bytes within block need same address

= Index must be same for every address within a
block, so it's redundant in tag check, thus can leave
off to save memory

Garcia, Nikoli¢ ‘
J%SE!&%L?Y Caches Il (13)

Memory Access without Cache

= |Load word instruction: 1w t0, 0(t1l)
= t1 contains1022,,,,Memory[1022]

Processor issues address 1022,,,10 Memory
Memory reads word at address 1022,,,(99)
Memory sends 99 to Processor

Processor loads 99 into register £0

B oW

|||||||||||||||||||||| Caches Il (14)

99

Garcia, Nikoli¢

()OO

Memory Access with Cache

= load word instruction: 1w t0, 0(tl)
= t1 contains 1022,,,,Memory[1022] = 99

= With cache (similar to a hash)
1. Processor issues address 1022,,,10 Cache
2. Cache checks to see if has copy of data at address
1022,
20a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory
. Memory reads 99 at address 1022,
. Memory sends 99 to Cache

Il. Cache replaces word with new 99
IV. Cache sends 99 to processor

3. Processor loads 99 into register 0

Garcia, Nikoli¢ ‘
1%&};}&%1&}7 Caches Il (15) @

e’ Solving Cache problems index; Offset

= Draw memory a block wide given 1 | O bits,

WIDTH

dashed word boundary lines siz6 of one block, B/block)
(size of one block, B/block) | | |
=3 ' MEMORY/
s o A
Index Offset —
00..00 00..00
00..00 oom01_’///7/(: : i
00..00 11..11 T
00..01 00..00 ®
11..11 11.11 B
00..00 00..00 L
11..11 11.11 SRR [

Garcia, Nikoli¢ ‘
§S£1§ER1,§Y Caches Il (16) @

Cache
Terminology

Caching Terminology

= When reading memory, 3 things can
happen:

= cache hit:

cache block is valid and contains proper address,
so read desired word

o cache miss:
nothing in cache in appropriate block, so fetch from
memory

o cache miss, block replacement:
wrong data is in cache at appropriate block, so
discard it and fetch desired data from memory
(cache always copy)

Garcia, Nikoli¢ ‘
Jésg}g%l&y Caches Il (18) @

Cache Temperatures

= Cold
= Cache empty

= Warming

= Cache filling with values you’ll hopefully be
accessing again soon

= Warm
= Cache is doing its job, fair % of hits
= Hot
= Cache is doing very well, high % of hits

Garcia, Nikoli¢ ‘
J%Egg)}g%l&y Caches Il (19)

& Cache Terms

= Hit rate: fraction of access that hit in the
cache

= Miss rate: 1—Hit rate

= Miss penalty: time to replace a block from
lower level in memory hierarchy to cache

= Hit time: time to access cache memory
(including tag comparison)

= Abbreviation: “$” = cache
o ...a Berkeley innovation!

Garcia, Nikoli¢

§S£1§ER1N§Y Caches Il (20) '

& One More Detail: Valid Bit
= When start a new program, cache does not

have valid information for this program

= Need an indicator whether this tag entry is
valid for this program

= Add a “valid bit” to the cache tag entry
0 = cache miss, even if by chance, address = tag
1 = cache hit, if processor address = tag

Garcia, Nikoli¢ ‘
§S£1§ER1N§Y Caches Il (21)

Example: 16 KB Direct-Mapped Cache, 16B blocks

= Valid bit: determines whether anything is stored in that row (when

computer initially powered up, all entries invalid)

Valid

Index

NoOYUTbkWNE=O

1022
1023

Tac Oxc-f 0x8-b O0x4-7 O0x0-3

o 1 . ¥
o+ ! o r
o + ! o r
o+ ! o r
[I D D D D
[0, AP RPN [[——— ——
[I D D D ——
[¢ I D D D

[—————

Looks like a real cache, will investigate it some more!

IIIIIIIIIIIIIIIIIII

Garcia, Nikoli¢

NIA Caches Il (22) ' ‘

“And in Conclusion...”

= We have learned the operation of a
direct-mapped cache

= Mechanism for transparent movement
of data among levels of a memory
hierarchy

= set of address/value bindings
= address = index to set of candidates
= compare desired address with tag

= service hit or miss o
Bereles load new block and binding on miss * Garda, Niklit
UUUUU g TEF C‘E’ng Caches Il (23)

