
UC Berkeley
Teaching Professor

Dan Garcia

UC Berkeley
Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Caches II

Caches II (3)

Garcia, Nikoli�

§ In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

ú Therefore, we only need to look in a single
location in the cache for the data if it exists in
the cache

ú Block is the unit of transfer between cache
and memory

Direct-Mapped Cache (1/4)

Caches II (4)

Garcia, Nikoli�

§ Cache Location 0 can be
occupied by data from:

ú Memory location 0, 4, 8, ...

ú 4 blocks Þ any memory
location that is multiple of 4

Direct-Mapped Cache (2/4)

Memory

Memory

Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct

Mapped Cache
Cache

Index
0
1
2
3

What if we wanted a block
to be bigger than one byte?

Block size = 1 byte

Caches II (5)

Garcia, Nikoli�

§ When we ask for a byte, the
controller finds out the right block,
and loads it all!

ú How does it know right block?

ú How do we select the byte?

§ E.g., Mem address 11101?

§ How does it know WHICH colored
block it originated from?

ú What do you do at baggage claim?

Direct-Mapped Cache (2/4)

Memory

Memory

Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C
1E

8-Byte Direct

Mapped Cache
Cache

Index
0
1
2
3
Block size = 2 bytes

01

23

45

67

89

etc.

Caches II (6)

Garcia, Nikoli�

§ What should go in the tag?
ú Do we need the entire

address?
 What do all these tags have in

common?

ú What did we do with the
immediate when we were
branch addressing, always
count by bytes?

§ Why not count by cache #?
ú It’s useful to draw memory with

the same width as the block
size

Direct-Mapped Cache (2/4)

Memory

Memory

Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C
1E

8-Byte Direct

Mapped Cache with Tag
Cache

Index
0
1
2
3
Block size = 2 bytes

01

23

45

67

89

etc.

0

1

2

3

Cache#

1
0

3
2

8

2

1E

14

Caches II (7)

Garcia, Nikoli�

§ Since multiple memory addresses map to same
cache index, how do we tell which one is in there?

§ What if we have a block size > 1 byte?

§ Answer: divide memory address into three fields

Issues with Direct-Mapped

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

Caches II (8)

Garcia, Nikoli�

§ All fields are read as unsigned integers.

§ Index

ú specifies the cache index (which “row”/block of the cache
we should look in)

§ Offset

ú once we’ve found correct block, specifies which byte
within the block we want

§ Tag

ú the remaining bits after offset and index are determined;
these are used to distinguish between all the memory
addresses that map to the same location

Direct-Mapped Cache Terminology

Caches II (9)

Garcia, Nikoli�

AREA (cache size, B)
= HEIGHT (# of blocks)

* WIDTH (size of one block, B/block)
WIDTH

(size of one block, B/block)

HEIGHT
(# of blocks)

2(H+W) = 2H * 2W

Tag Index Offset

TIO Cache Mnemonic (Thanks Uncle Dan!)

AREA
(cache size, B)

þ

Caches II (11)

Garcia, Nikoli�

§ Suppose we have a 8B of data in a direct-
mapped cache with 2-byte blocks

ú Sound familiar?

§ Determine the size of the tag, index and
offset fields if using a 32-bit arch (RV32)

§ Offset

ú need to specify correct byte within a block

ú block contains 2 bytes

= 21 bytes

ú need 1 bit to specify correct byte

Direct-Mapped Cache Example (1/3)

Caches II (12)

Garcia, Nikoli�

§ Index: (~index into an “array of blocks”)

ú need to specify correct block in cache

ú cache contains 8 B = 23 bytes

ú block contains 2 B = 21 bytes

ú # blocks/cache

= bytes/cache
bytes/block

= 23 bytes/cache
21 bytes/block

= 22 blocks/cache

ú need 2 bits to specify this many blocks

Direct-Mapped Cache Example (2/3)

Caches II (13)

Garcia, Nikoli�

§ Tag: use remaining bits as tag

ú tag length = addr length – offset - index
= 32 - 1 - 2 bits
= 29 bits

ú so tag is leftmost 29 bits of memory address

ú Tag can be thought of as “cache number”

§ Why not full 32-bit address as tag?

ú All bytes within block need same address

ú Index must be same for every address within a
block, so it’s redundant in tag check, thus can leave
off to save memory

Direct-Mapped Cache Example (3/3)

Caches II (14)

Garcia, Nikoli�

§ Load word instruction: lw t0, 0(t1)

§ t1 contains 1022ten ,Memory[1022] = 99

1. Processor issues address 1022ten to Memory

2. Memory reads word at address 1022ten (99)

3. Memory sends 99 to Processor

4. Processor loads 99 into register t0

Memory Access without Cache

Caches II (15)

Garcia, Nikoli�

§ Load word instruction: lw t0, 0(t1)

§ t1 contains 1022ten ,Memory[1022] = 99

§ With cache (similar to a hash)
1. Processor issues address 1022ten to Cache
2. Cache checks to see if has copy of data at address

1022ten

2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten

II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

3. Processor loads 99 into register t0

Memory Access with Cache

Caches II (16)

Garcia, Nikoli�

Solving Cache problems
§ Draw memory a block wide given T I O bits,

dashed word boundary lines
WIDTH

(size of one block, B/block)

H
EI

G
H

T
(#

 o
f

b
lo

ck
s)

Tag Index Offset

CACHE

WIDTH
(size of one block, B/block)

Tag = 0

Tag = 1

Tag = 2

Tag = max

00…00 00…00 00…00

00…00 00…00 00…01

00…00 00…00 11…11

00…00 00…01 00…00

00…00 11…11 11…11

00…01 00…00 00…00

11…11 11…11 11…11

Tag Index Offset

MEMORY

þ

Caches II (18)

Garcia, Nikoli�

§ When reading memory, 3 things can
happen:

ú cache hit:
cache block is valid and contains proper address,
so read desired word

ú cache miss:
nothing in cache in appropriate block, so fetch from
memory

ú cache miss, block replacement:
wrong data is in cache at appropriate block, so
discard it and fetch desired data from memory
(cache always copy)

Caching Terminology

Caches II (19)

Garcia, Nikoli�

§ Cold

ú Cache empty

§ Warming

ú Cache filling with values you’ll hopefully be
accessing again soon

§ Warm

ú Cache is doing its job, fair % of hits

§ Hot

ú Cache is doing very well, high % of hits

Cache Temperatures

Caches II (20)

Garcia, Nikoli�

§ Hit rate: fraction of access that hit in the
cache

§ Miss rate: 1 – Hit rate

§ Miss penalty: time to replace a block from
lower level in memory hierarchy to cache

§ Hit time: time to access cache memory
(including tag comparison)

§ Abbreviation: “$” = cache
ú …a Berkeley innovation!

Cache Terms

Caches II (21)

Garcia, Nikoli�

§ When start a new program, cache does not
have valid information for this program

§ Need an indicator whether this tag entry is
valid for this program

§ Add a “valid bit” to the cache tag entry

0 à cache miss, even if by chance, address = tag

1 à cache hit, if processor address = tag

One More Detail: Valid Bit

Caches II (22)

Garcia, Nikoli�

Example: 16 KB Direct-Mapped Cache, 16B blocks
§ Valid bit: determines whether anything is stored in that row (when

computer initially powered up, all entries invalid)

...

Valid
Tag 0xc-f 0x8-b 0x4-7 0x0-3

0

1

2

3

4

5

6

7

1022

1023

...

Index
0

0

0

0

0

0

0

0

0

0

Looks like a real cache, will investigate it some more!

Caches II (23)

Garcia, Nikoli�

§ We have learned the operation of a
direct-mapped cache

§ Mechanism for transparent movement
of data among levels of a memory
hierarchy

ú set of address/value bindings

ú address à index to set of candidates

ú compare desired address with tag

ú service hit or miss

 load new block and binding on miss

<And in Conclusion…=

þ

