
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Caches IV

Caches III (3)

Garcia, Nikoli�

§ Memory address fields:

ú Tag: same as before

ú Offset: same as before

ú Index: points us to the correct “row” (called a
set in this case)

§ So what’s the difference?

ú each set contains multiple blocks

ú once we’ve found correct set, must compare
with all tags in that set to find our data

ú Size of $ is # sets x N blocks/set x block size

N-Way Set Associative Cache (1/3)

Caches III (4)

Garcia, Nikoli�

§ Here’s a simple 2-way
set associative cache.

ú 2 sets, 2 blocks in set

Associative Cache Example

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index

0
0
1
1

Caches III (5)

Garcia, Nikoli�

§ Basic Idea

ú cache is direct-mapped w/respect to sets

ú each set is fully associative with N blocks in it

§ Given memory address:

ú Find correct set using Index value.

ú Compare Tag with all Tag values in that set.

ú If a match occurs, hit!, otherwise a miss.

ú Finally, use the offset field as usual to find
the desired data within the block.

N-Way Set Associative Cache (2/3)

Caches III (6)

Garcia, Nikoli�

§ What’s so great about this?

ú even a 2-way set assoc cache avoids a lot of
conflict misses

ú hardware cost isn’t that bad: only need N
comparators

§ In fact, for a cache with M blocks,

ú it’s Direct-Mapped if it’s 1-way set assoc

ú it’s Fully Assoc if it’s M-way set assoc

ú so these two are just special cases of the
more general set associative design

N-Way Set Associative Cache (3/3)

Caches III (7)

Garcia, Nikoli�

4-Way Set Associative Cache Circuit

tag

index

“One Hot” Encoding
þ

Caches III (9)

Garcia, Nikoli�

§ Direct-Mapped Cache

ú index completely specifies position which position a block can go in
on a miss

§ N-Way Set Assoc

ú index specifies a set, but block can occupy any position within the set
on a miss

§ Fully Associative

ú block can be written into any position

§ Question: if we have the choice, where should we write

an incoming block?

ú If there’s a valid bit off, write new block into first invalid.

ú If all are valid, pick a replacement policy

 rule for which block gets “cached out” on a miss.

Block Replacement Policy

Caches III (10)

Garcia, Nikoli�

§ LRU (Least Recently Used)

ú Idea: cache out block which has been accessed (read or
write) least recently

ú Pro: temporal locality è recent past use implies likely
future use: in fact, this is a very effective policy

ú Con: with 2-way set assoc, easy to keep track (one LRU
bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

§ FIFO

ú Idea: ignores accesses, just tracks initial order

§ Random

ú If low temporal locality of workload, works ok

Block Replacement Policy

Caches III (11)

Garcia, Nikoli�

§ Our same 2-way set associative cache with a four
byte total capacity and one byte blocks. We

perform the following byte accesses:

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

§ How many hits and how many misses will there be

for the LRU replacement policy?

Block Replacement Example

0
0
1
1

loc 0 loc 1

set 0

set 1

Drawn
another way

Caches III (12)

Garcia, Nikoli�

Addresses 0, 2, 0, 1, 4, 0, ...

Block Replacement Example: LRU
0

lru

2

1
lru

loc 0 loc 1

set 0

set 1

0 2
lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0
set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1

0

1
lru

lru
24

lru

set 0

set 1

0 4

1
lru

lru lru

Caches III (13)

Garcia, Nikoli�

Addresses 0, 2, 0, 1, 4, 0, ...

Cache Simulator!
0

lru

2

1
lru

loc 0 loc 1

set 0

set 1

0 2
lruset 0

set 1

0
set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1

0

1
lru

lru
24

lru

set 0

set 1

0 4

1
lru

lru lru

þ

www.ecs.umass.edu/ece/koren/architecture/Cache/frame1.htm

Caches III (15)

Garcia, Nikoli�

§ How to choose between associativity, block

size, replacement & write policy?

§ Design against a performance model

ú Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

ú influenced by technology & program behavior

§ Create the illusion of a memory that is

large, cheap, and fast - on average

§ How can we improve miss penalty?

Big Idea

Caches III (16)

Garcia, Nikoli�

§ When caches first became popular, Miss Penalty ~
10 processor clock cycles

§ Today 3 GHz Processor (1/3 ns per clock cycle) and
80 ns to go to DRAM

~200 processor clock cycles!

Improving Miss Penalty

Proc $2

D
R
A
M$

MEM

Solution: another cache between memory and the

processor cache: Second Level (L2) Cache

Caches III (17)

Garcia, Nikoli�

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g.
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Core

Faster

Expensive

Small capacity

Let’s see Cache configuration on Dan’s computer…

Caches III (18)

Garcia, Nikoli�

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *

(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

Caches III (19)

Garcia, Nikoli�

§ Assume

ú Hit Time = 1 cycle

ú Miss rate = 5%

ú Miss penalty = 20 cycles

ú Calculate AMAT…

§ Avg mem access time

= 1 + 0.05 x 20

= 1 + 1 cycles

= 2 cycles

Example

Caches III (20)

Garcia, Nikoli�

§ Larger cache

ú limited by cost and technology

ú hit time of first level cache < cycle time (bigger
caches are slower)

§ More places in the cache to put each block

of memory – associativity

ú fully-associative

 any block any line

ú N-way set associated

 N places for each block

 direct map: N=1

Ways to reduce miss rate

Caches III (21)

Garcia, Nikoli�

§ L1

ú size: tens of KB

ú hit time: complete in one clock cycle

ú miss rates: 1-5%

§ L2:

ú size: hundreds of KB

ú hit time: few clock cycles

ú miss rates: 10-20%

§ L2 miss rate is fraction of L1 misses that also miss in L2

ú why so high?

Typical Scale

Caches III (22)

Garcia, Nikoli�

§ Assume

ú L1 Hit Time = 1 cycle

ú L1 Miss rate = 5%

ú L2 Hit Time = 5 cycles

ú L2 Miss rate = 15% (% L1 misses that miss)

ú L2 Miss Penalty = 200 cycles

§ L1 miss penalty = 5 + 0.15 * 200 = 35

§ Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

Example: with L2 cache

Caches III (23)

Garcia, Nikoli�

§ Assume

ú L1 Hit Time = 1 cycle

ú L1 Miss rate = 5%

ú L1 Miss Penalty = 200 cycles

§ Avg mem access time = 1 + 0.05 x 200
= 11 cycles

§ 4x faster with L2 cache! (2.75 vs. 11)

Example: without L2 cache

þ

Caches III (25)

Garcia, Nikoli�

§ Cache

ú 32 KiB Instructions & 32 KiB Data
L1 caches

ú External L2 Cache interface with
integrated controller and cache
tags, supports up to 1 MiB
external L2 cache

ú Dual Memory Management Units
(MMU) with Translation Lookaside
Buffers (TLB)

§ Pipelining

ú Superscalar (3 inst/cycle)

ú 6 execution units (2 integer and 1
double precision IEEE floating
point)

An Actual CPU – Early PowerPC

Caches III (26)

Garcia, Nikoli�

An Actual CPU – Pentium M

32KiB I$

32KiB D$

Caches III (27)

Garcia, Nikoli�

An Actual CPU – Intel core i7

(for off-chip DRAM)

Caches III (28)

Garcia, Nikoli�

§ We’ve discussed memory caching in detail. Caching in general

shows up over and over in computer systems

ú Filesystem cache, Web page cache, Game databases / tablebases, Software
memoization, Others?

§ Big idea: if something is expensive but we want to do it repeatedly,

do it once and cache the result.

§ Cache design choices:

ú Size of cache: speed v. capacity

ú Block size (i.e., cache aspect ratio)

ú Write Policy (Write through v. write back

ú Associativity choice of N (direct-mapped v. set v. fully associative)

ú Block replacement policy

ú 2nd level cache?

ú 3rd level cache?

§ Use performance model to pick between choices, depending on

programs, technology, budget, ...

And in Conclusion…

