CS61C

CICEIREEL

N
UC Berkel : UC Berkel
Teaching IrF’r?)feeyssor CO m p Uter ArCh |teCt ure Profersseo?y
Dan Garcia (a.k.a. Machine Structures) Bora Nikolié

Caches IV

Garcia, Nikoli¢
§E§£1§SR1N§Y cs6lc.org @

Set-Associative
Caches

N-Way Set Associative Cache (1/3)

= Memory address fields:
- same as before
= Offset: same as before

= |ndex: points us to the correct “row” (called a
set in this case)

= So what's the difference?
= each set contains multiple blocks

= once we've found correct set, must compare
with all tags in that set to find our data

Borl] Size of $ is # sets « N blocks/set « block Siz€suco o
UUUUU g TEF CAERN'? y Caches lll (3) @

. Associative Cache Example

|
\
|

D |

Memory

Cache Index

Address Memory

=

IIIIIIIIIIIIIIIIIIIIII

Here's a simple 2-way
set associative cache.
o 2 sets, 2 blocks in set oo niaie

Caches Il (4)

N-Way Set Associative Cache 2/ 3)
= Basic Idea

o cache is direct-mapped w/respect to sets
= each set is fully associative with N blocks in it

= Given memory address:
= Find correct set using Index value.
= Compare Tag with all Tag values in that set.
= |f @ match occurs, hit!, otherwise a miss.

= Finally, use the offset field as usual to find
the desired data within the block.

Garcia, Nikoli¢
J%Egg)}g%l&y Caches il (5)

N-Way Set Associative Cache (3/3)

= What's so great about this?

s even a 2-way set assoc cache avoids a lot of
conflict misses

= hardware cost isn’t that bad: only need N
comparators

= |n fact, for a cache with M blocks,
o jt's Direct-Mapped if it's 1-way set assoc
o jt's Fully Assoc if it's M-way set assoc

= 50 these two are just special cases of the
more general set associative design N

J%SE!&%L?Y Caches lll (6) '

4-Way Set Associative Cache Gircuit

Address
3130--+12111098-+--3210

\\22 \\8
index
R e V Tag Data V Tag Data V Tag Data
0
1
2
e — é *yéfé\zs*; g
253
254
255
T 4 S \\22 \\32
of =
Y
i
[

=
E\Mon multiplech

Hit Data M

“One Hot” Encodi ng Garcia, Nikolié

Berkeley Caches I QOO

Block
Replacement
with Example

Block F?eplacement Policy

Direct-Mapped Cache

o index completely specifies position which position a block can go in
on a MIsS

N-Way Set Assoc
o index specifies a set, but block can occupy any position within the set
on a MIsS

Fully Associative
o block can be written into any position

Question: if we have the choice, where should we write
an incoming block?
o |f there’s a valid bit off, write new block into first invalid.

o |f all are valid, pick a replacement policy
rule for which block gets “cached out” on a miss.

Garcia, leohc

§E§£1§§,R1N§Y Caches lil (9) @

Block Replacement Policy

= | RU (Least Recently Used)

o |dea: cache out block which has been accessed (read or
write) least recently

= Pro: temporal locality =» recent past use implies likely
future use: in fact, this is a very effective policy

= Con: with 2-way set assoc, easy to keep track (one LRU
bit); with 4-way or greater, requires complicated
hardware and much time to keep track of this

= HFO
o |deq: ignores accesses, just fracks initial order

= Random
= |f low temporal locality of workload, works ok

Garcia, Nikoli¢ ‘
1%&21&%1&}7 Caches Il (10) @

Block Replacement Example

= QOur same 2-way set associative cache with a four
byte total capacity and one byte blocks. We
perform the following byte accesses:

0,2,0,1,4,0,2,3,5,4

= How many hits and how many misses will there be
for the LRU replacement policy?
locO loc 1

set O
set 1
Garcia, Nikoli¢

Caches Il M) ' ‘

sic. Block Replacement Example: LRUJ loc 0 loc 1

seto] o[
0: miss, bring into set 0 (loc 0) set 1 --
0
2: miss, bring into set O (loc 1) ::: ; -.E
0: hit set0 mm
3
1: miss, bring into set 1 (loc 0) set0 mm
) 1
4: miss, bring into set O (oc 1, replace 2) set 0 mm
set 1 “

Addresses 0,2,0,1.4,0, ... set 0 nm

0: hit
B k 1 Set1 nm ' Garcia, Nikolié‘
””””” S Caches Il (12) @

¥

Ca.Che SmU|atOr' loc 0 loc 1

www.ecs.umass .edu/ece/koren/architecture/Cache/framel.htm

ml Cache Contents: LRU replacement policy;
4 Block, 2-way
set-associative

LRU cache = tags

FIFO shown in red

RAND | Replacement Policy
00000000 |00000010
Enter Query Sequence - Task A for 1-

COLOR Compulsory Capacity Conflict Cache
KEY: Miss Miss Miss Hit

Cache Size 4 ~ #Sets 2

in Decimal, or Hex Unused

020140
Cache Query Results:

Compulsory Misses

Total Cache Queries

\
| Capacity Misses:| 0 | Total Misses :
SHOW CACHE || HELP ~ Conflict Misses :| 1 Miss Rate

Cache Hits 2 Hit Rate

3

Set Repeat |2 cycles
Cache Query Sequence Trace

Cache Query Sequence Trace Address data replaced on miss shown in
blue subscript

Task B (when multi-tasking)

Addresses 0, 2,0, 1. 4,0, ...

M

Garcia, Nikoli¢

Berkeley Caches 11 13 QOO

Average

Memory Access
Time (AMAT)

& B ldea

= How to choose between associativity, block
size, replacement & write policy?

= Design against a performance model
= Minimize: Average Memory Access Time
= Hit Time
+ Miss Penalty x Miss Rate
o influenced by technology & program behavior

= Create the illusion of a memory that is
large, cheap, and fast - on average

= How can we improve miss penalty?

Garcia, Nikoli¢

§S£1§ER1N§Y Caches lll (15) '

sie: Improving Miss Penalty
= When caches first became popular, Miss Penalty ~
10 processor clock cycles

= Today 3 GHz Processor (1/3 ns per clock cycle) and
80 nsto go to DRAM
~200 processor clock cycles!

MEM

Proc fe=—p| | | $ I

| H
El

Solution: another cache between memory and the
processor cache: Second Level (L2) Cache

Garcia, Nikoli¢

légglggklgy Caches lll (16) '

Great Idea #3: Principle of Locality / Memory Hierarchy

T

Processor chip

L

CPU
Core

Registers

1
Extremely fast
Extremely expensive
Tiny capacity

[T DRAM chip —e.qg.
DDR3/4/5
HBM/HBM2/3

Berkeley

UNIVERSITY OF CALIFORNIA

Random-Access Memory (RAM)

Fast |
Priced reasonably
Medium capacity

Let’s see Cache configuration on Dan’s computer...

Caches il (17)

Garcia, Nikoli¢

L1 hit 12 hit

fime time L2 Miss Rate
L2 Miss Penalty

LT Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty) Sarcia Nikofic

Berkeley Caches Il 18 QOO

= Assume
= Hit Time =1 cycle
= Miss rate = 5%
= Miss penalty = 20 cycles
= Calculate AMAT...
= Avg mem access time
=1+ 0.05x 20
=1+ 1cycles
= 2 cycles

Garcia, Nikoli¢
§S£1§ER1,§Y Caches Il (19)

Ways to reduce miss rate

= larger cache
o |imited by cost and technology
o hit time of first level cache < cycle time (bigger
caches are slower)
= More places in the cache to put each block
of memory —associativity
o fully-associative
= any block any line
= N-way set associated
- N places for each block
= direct map: N=1 .
Berkeley — OO

Typical Scale

= |1
o sjze: tens of KB
= hit time: complete in one clock cycle
o miss rates: 1-5%
= | 2:
o size: hundreds of KB

= hit time: few clock cycles
= miss rates: 10-20%

= |2 miss rate is fraction of L1 misses that also miss in L2
= why so high?

Garcia, Nikoli¢ ‘
§S£1§ER1,§Y Caches lll (21) @

Example: with L2 cache

= Assume
= L1 Hit Time =1 cycle
= LT Miss rate = 5%
o L2 Hit Time = 5 cycles
a L2 Miss rate = 15% (% L1 misses that miss)
= L2 Miss Penalty = 200 cycles

= L1miss penalty =5 + 0.15 * 200 = 35

= Avg mem accesstime =1+ 0.05 x 35
= 2.75 cycles

Garcia, Nikoli¢
§E§£1§ER1N§Y Caches lll (22)

Example: without L2 cache

= Assume
= L1 Hit Time =1 cycle
= L1 Miss rate = 5%
= L1 Miss Penalty = 200 cycles

= Avg mem access time = 1+ 0.05 x 200
= 11 cycles

= 4x faster with L2 cache! (2.75 vs. 1) -

Garcia, Nikoli¢
§E§£1§ER1N§Y Caches lll (23)

Actual CPUs

An Actual CPU — Early PowerPC

" CaChe lu’i'“ﬂli".’.’.’!.’:"ll’ A AN 1uj'.':::|u_u=r-.'u
o 32 KiB Instructions & 32 KiB Data
L1 caches

o External L2 Cache interface with
integrated controller and cache

tags, supports up to 1 MiB
external L2 cache

o Dual Memory Management Units
(MMU) with Translation Lookaside
Buffers (TLB)

= Pipelining
o Superscalar (3 inst/cycle)

o 6 execution units (2 integer and 1
double precision |EEE floating
point)

3 ¥ N
g N/ <
¢ %
e f
Mg

et A3 B e

3 0 B : 3
4 - - §

FIX |

~ 1% .
. . (® ¥
Tasg o hss phAAASLORALRAAL LA SLLLEN L1 Lo 43 IS TRREITE 4iFY a4

- e

i
|
:

M LS 1T

Garcia, Nikoli¢
ﬁg{l&gl&y Caches il (25) @

An Actual CPU — Pentium M

Infel® Penfium®
M Processor

ew Mi chitecture
77 Million Tmulsm
Micro-Ops Fusion - : a = y mu i
fuses operations {
together to enable
faster execution of

instructions at lower
power

Prediction — fewer re-dos
for increased performance

32KiB I$

32KiB D$ — e LN B Sohanced -
| i B\ Technoiogy - Muliple

,r,»i-,-}.E; N
Sy MDY s

T Enhanced intelé

lower power levels

Garcia, Nikolic
ﬁg{l&gl&y Caches lil (26) @

@ An Actual CPU - Intel core i7

e B
3 L] =
LB |
L [F A .
: nam
& g :
g
|
|
- il
-
{
}

Garcia, Nikoli¢
%S};}é%l,?Y Caches Il (27) @

And in Conclusion...

= We've discussed memory caching in detail. Caching in general
shows up over and over in computer systems

o Filesystem cache, Web page cache, Game databases / tablebases, Software
memoization, Others?

= Big idea: if something is expensive but we want to do it repeatedly,
do it once and cache the result.

= (Cache design choices:
o Size of cache: speed v. capacity
o Block size (i.e., cache aspect ratio)
o Write Policy (Write through v. write back
o Associativity choice of N (direct-mapped v. set v. fully associative)
o Block replacement policy
= 2nd level cache?
= 3rd level cache?

= Use performance model to pick between choices, depending on
programs, technology, budget, ...

Garcia, Nikoli¢ ‘
§E§£1§ER1N§Y Caches lll (28) @

