
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikolić

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikolić

Operating Systems
and Virtual Memory

RISC-V (2)

Garcia, Nikolić

Machine Structures

CS61C

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

Transistors

MemoryHardware

Software Assembler

Fabrication

RISC-V (3)

Garcia, Nikolić

Machine Structures

CS61C

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

Transistors

MemoryHardware

Software Assembler

Fabrication

RISC-V (4)

Garcia, Nikolić

Machine Structures

CS61C

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

Transistors

MemoryHardware

Software Assembler

Fabrication

RISC-V (5)

Garcia, Nikolić

New-School Machine Structures

Parallel Requests
Assigned to computer

e.g., Search “Cats”

Parallel Threads
Assigned to core e.g., Lookup, Ads

Parallel Instructions
>1 instruction @ one time

e.g., 5 pipelined instructions

Parallel Data
>1 data item @ one time

e.g., Add of 4 pairs of words

Hardware descriptions
All gates work in parallel at same time

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Logic Gates

Core Core

…Memory (Cache)

Input/Output

Computer

Main Memory

Exec. Unit(s) Functional
Block(s)

A0+B0 A1+B1

Out = AB+CD

A

B

C

D

Harness
Parallelism &
Achieve High
Performance

RISC-V (6)

Garcia, Nikolić

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g.
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Virtual Memory

Solid-State Memory (Flash)

Magnetic Disks

Core

Faster

Expensive

Small capacity

Fast

Cheap

Large capacity

SSD, HDD

Drives

RISC-V (7)

Garcia, Nikolić

Memory

CS61C so far…

CPU

RISC-V Assembly

C Programs

#include <stdlib.h>

int fib(int n) {

return

fib(n-1) +

fib(n-2);

}

.foo

lw t0, 4(a0)

addi t1, t0, 3

beq t1, t2, foo

nop

Project 1
Project 2

Project 3

+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

Imm.

Gen

DataB

clk

Branch

Comp

+4

Add

Forwarding

control logic

RISC-V (8)

Garcia, Nikolić

So How is a Laptop Any Different?

Keyboard

Screen

Storage

RISC-V (9)

Garcia, Nikolić

Memory

Adding I/O

CPU

RISC-V Assembly

C Programs

#include <stdlib.h>

int fib(int n) {

return

fib(n-1) +

fib(n-2);

}

.foo

lw t0, 4(a0)

addi t1, t0, 3

beq t1, t2, foo

nop

Project 1
Project 2

Project 3

+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

Imm.

Gen

DataB

clk

Branch

Comp

+4

Add

Forwarding

control logic

I/O (Input/Output)

Screen Keyboard Storage

This module: Memory (DRAM)

Storage (Disk) and I/O

RISC-V (10)

Garcia, Nikolić

Raspberry Pi ($35)

CPU+$s

Storage I/O

(Micro SD

Card)

Serial I/O

(USB)

Network I/O

(Ethernet)

Screen I/O

(HDMI)

Memory

Wireless I/O

(WiFi)

RISC-V (11)

Garcia, Nikolić

It’s a Real Computer!

thepihut.com

RISC-V (12)

Garcia, Nikolić

 Lot’s of concepts

from 61C covered in a

book, with Raspberry

Pi exercises

(and it is free to download if you are

a Cal student:

https://onlinelibrary.wiley.com/doi/

book/10.1002/9781119415534)

CS61C with Raspberry PI?

RISC-V (13)

Garcia, Nikolić

 That’s not the same! When we run VENUS, it

only executes one program and then stops.

 When I switch on my computer, I get this:

But Wait…

Yes, but that’s just software! The Operating System (OS)

RISC-V (15)

Garcia, Nikolić

 The biggest piece of software on your machine?

 How many lines of code? These are guesstimates:

Well, “Just Software”

Codebases (in millions

of lines of code). CC BY-

NC 3.0 —

David McCandless ©

2015

http://www.informatio

nisbeautiful.net/visualiz

ations/million-lines-of-

code/

RISC-V (16)

Garcia, Nikolić

Operating System

M
ill

io
n

s
o

f
lin

e
s

Lines of code in Linux kernel

15M

10M

5M

versions

RISC-V (17)

Garcia, Nikolić

 OS is the (first) thing that runs when computer starts

 Finds and controls all devices in the machine in a general way

 Relying on hardware specific “device drivers”

 Starts services (100+)

 File system,

 Network stack (Ethernet, WiFi, Bluetooth, …),

 TTY (keyboard),

 …

 Loads, runs and manages programs:

 Multiple programs at the same time (time-sharing)

 Isolate programs from each other (isolation)

 Multiplex resources between applications (e.g., devices)

What Does the OS do?

RISC-V (18)

Garcia, Nikolić

What Does the Core of the OS Do?

 Provide isolation between running processes
 Each program runs in its own little world •

 Provide interaction with the outside world
 Interact with "devices": Disk, display, network, etc... 11

RISC-V (19)

Garcia, Nikolić

What Does OS Need from Hardware?
 Memory translation

 Each running process has a mapping from "virtual" to "physical" addresses

that are different for each process

 When you do a load or a store, the program issues a virtual address... But

the actual memory accessed is a physical address

 Protection and privilege

 Split the processor into at least two running modes: "User" and

"Supervisor"

 RISC-V also has "Machine" below "Supervisor"

 Lesser privilege can not change its memory mapping

 But "Supervisor" can change the mapping for any given program

 And supervisor has its own set of mapping of virtual->physical

 Traps & Interrupts

 A way of going into Supervisor mode on demand

RISC-V (20)

Garcia, Nikolić

What Happens at Boot?

 When the computer switches on, it does the

same as VENUS: the CPU executes instructions

from some start address (stored in Flash ROM)

CPU

PC = 0x2000 (some default value) Address Space

0x0002000:

Code to copy

firmware into

regular memory and

jump into it)

Memory mapped
+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

Imm.

Gen

DataB

clk

Branch

Comp

+4

Add

Forwarding

control logic

RISC-V (21)

Garcia, Nikolić

What Happens at Boot?

1. BIOS*: Find a storage

device and load first

sector (block of data)

2. Bootloader (stored on,

e.g., disk): Load the OS

kernel from disk into a

location in memory and

jump into it

3. OS Boot:

Initialize services,

drivers, etc.

4. Init: Launch an

application that waits

for input in loop (e.g.,

Terminal/Desktop/...

*BIOS: Basic Input Output System

RISC-V (23)

Garcia, Nikolić

 Applications are called “processes” in most OSs

 Thread: shared memory

 Process: separate memory

 Both threads and processes run (pseudo) simultaneously

 Apps are started by another process (e.g., shell) calling an OS

routine (using a “syscall”)

 Depends on OS; Linux uses fork to create a new process, and execve

(execute file command) to load application

 Loads executable file from disk (using the file system service)

and puts instructions & data into memory (.text, .data sections),

prepares stack and heap

 Set argc and argv, jump to start of main

 Shell waits for main to return (join)

Launching Applications

RISC-V (24)

Garcia, Nikolić

 If something goes wrong in an application, it could crash the

entire machine. And what about malware, etc.?

 The OS enforces resource constraints to applications (e.g.,

access to memory, devices)

 To help protect the OS from the application, CPUs have a

supervisor mode (e.g., set by a status bit in a special register)

 A process can only access a subset of instructions and (physical)

memory when not in supervisor mode (user mode)

 Process can change out of supervisor mode using a special

instruction, but not into it directly – only using an interrupt

 Supervisory mode is a bit like “superuser”

 But used much more sparingly (most of OS code does not run in

supervisory mode)

 Errors in supervisory mode often catastrophic (blue “screen of death”, or “I

just corrupted your disk”)

Supervisor Mode

RISC-V (25)

Garcia, Nikolić

 What if we want to call an OS routine? E.g.,

 to read a file,

 launch a new process,

 ask for more memory (malloc),

 send data, etc.

 Need to perform a syscall:

 Set up function arguments in registers,

 Raise software interrupt (with special assembly instruction)

 OS will perform the operation and return to user mode

 This way, the OS can mediate access to all resources,

and devices

Syscalls

RISC-V (26)

Garcia, Nikolić

 We need to transition into Supervisor mode when

"something" happens

 Interrupt: Something external to the running program

 Something happens from the outside world

 Exception: Something done by the running program

 Accessing memory it isn't "supposed" to, executing an illegal instruction,

reading a csr not supposed at that privilege

 ECALL: Trigger an exception to the higher privilege

 How you communicate with the operating system: Used to implement

"syscalls"

 EBREAK: Trigger an exception within the current privilege

Interrupts, Exceptions

RISC-V (27)

Garcia, Nikolić

 Interrupt – caused by an event external to current running

program

 E.g., key press, disk I/O

 Asynchronous to current program

 Can handle interrupt on any convenient instruction

 “Whenever it’s convenient, just don’t wait too long”

 Exception – caused by some event during execution of one

instruction of current running program

 E.g., memory error, bus error, illegal instruction, raised exception

 Synchronous

 Must handle exception precisely on instruction that causes exception

 “Drop whatever you are doing and act now”

 Trap – action of servicing interrupt or exception by hardware

jump to “interrupt or trap handler” code

Terminology (In 61C)

RISC-V (28)

Garcia, Nikolić

 Altering the regular execution flow

Trap Handling

ii-1

ii

ii+1

hii-1

hii

hii+1

Program
Trap

handler

An external or internal event that needs to be processed - by another program; often

handled by OS. The event is often unexpected from original program’s point of view.

RISC-V (29)

Garcia, Nikolić

 Trap handler’s view of machine state is that every instruction

prior to the trapped one (e.g., memory error) has completed,

and no instruction after the trap has executed.

 Implies that handler can return from an interrupt by restoring

user registers and jumping back to interrupted instruction

 Interrupt handler software doesn’t need to understand the pipeline of the

machine, or what program was doing!

 More complex to handle trap caused by an exception than interrupt

 Providing precise traps is tricky in a pipelined superscalar out-

of-order processor!

 But a requirement for things to actually work right!

Precise Traps

RISC-V (30)

Garcia, Nikolić

Exceptions in a 5-Stage Pipeline

RISC-V (31)

Garcia, Nikolić

 Exceptions are handled like pipeline hazards

1) Complete execution of instructions before exception occurred

2) Flush instructions currently in pipeline (i.e., convert to nops or

“bubbles”)

3) Optionally store exception cause in status register

 Indicate type of exception

 4) Transfer execution to trap handler

 5) Optionally, return to original program and re-execute

instruction

Trap Handling

RISC-V (32)

Garcia, Nikolić

 The OS runs multiple applications at the same time

 But not really (unless you have a core per process)

 Switches between processes very quickly (on human

time scale) – this is called a “context switch”

 When jumping into process, set timer (we will call

this ‘interrupt’)

 When it expires, store PC, registers, etc. (process state)

 Pick a different process to run and load its state

 Set timer, change to user mode, jump to the new PC

 Deciding what process to run is called scheduling

Multiprogramming

RISC-V (33)

Garcia, Nikolić

 Supervisor mode alone is not sufficient to fully isolate

applications from each other or from the OS

 Application could overwrite another application’s memory.

 Typically programs start at some fixed address, e.g. 0x8FFFFFFF

 How can 100’s of programs share memory at location 0x8FFFFFFF?

 Also, may want to address more memory than we actually have

(e.g., for sparse data structures)

 Solution: Virtual Memory

 Gives each process the illusion of a full memory address space

that it has completely for itself

Protection, Translation, Paging

	Operating Systems �and Virtual Memory
	Machine Structures
	Machine Structures
	Machine Structures
	New-School Machine Structures
	Great Idea #3: Principle of Locality / Memory Hierarchy
	CS61C so far…
	So How is a Laptop Any Different?
	Adding I/O
	Raspberry Pi ($35)
	It’s a Real Computer!
	CS61C with Raspberry PI?
	But Wait…
	Slide Number 14
	Well, “Just Software”
	Operating System
	What Does the OS do?
	What Does the Core of the OS Do?
	What Does OS Need from Hardware?
	What Happens at Boot?
	What Happens at Boot?
	Slide Number 22
	Launching Applications
	Supervisor Mode
	Syscalls
	Interrupts, Exceptions
	Terminology (In 61C)
	Trap Handling
	Precise Traps
	Exceptions in a 5-Stage Pipeline
	Trap Handling
	Multiprogramming
	Protection, Translation, Paging

