


RISC-V (35)

Garcia, Nikolić

 Virtual memory - Next level in the memory hierarchy:

 Provides program with illusion of a very large main memory: 

Working set of “pages” reside in main memory - others are on disk

 Demand paging: Provides the ability to run programs larger than 

the primary memory (DRAM)

 Hides differences between machine configurations

 Also allows OS to share memory, protect programs from 

each other

 Today, more important for protection than just another 

level of memory hierarchy

 Each process thinks it has all the memory to itself

 (Historically, it predates caches)

Virtual Memory



RISC-V (36)

Garcia, Nikolić

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g. 
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Virtual Memory

Solid-State Memory (Flash)

Magnetic Disks

Core

Faster

Expensive

Small capacity

(Not so) Fast

Cheap

Large capacity

SSD, HDD

Drives



RISC-V (37)

Garcia, Nikolić

Virtual vs. Physical Addresses

 Processes use virtual addresses, e.g., 0 … 0xffff,ffff

 Many processes, all using same (conflicting) addresses

 Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)

 Memory manager maps virtual to physical addresses

Many of these (soft & hardware cores)

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Instruction Cache

Data Cache

Code

V
ir

tu
a

l
A

d
d

re
ss

e
s

Heap

Stack

Unused

Memory

P
h

y
si

ca
l
A

d
d

re
ss

e
s

Static Data

?

0000 0000hex

ffff ffffhex

One main memory



RISC-V (38)

Garcia, Nikolić

 Address space = set of addresses for all 
available memory locations

 Now, two kinds of memory addresses:

 Virtual Address Space 

 Set of addresses that the user program knows about

 Physical Address Space

 Set of addresses that map to actual physical locations in 
memory

 Hidden from user applications

 Memory manager maps (‘translates’) between 
these two address spaces

Address Spaces



RISC-V (39)

Garcia, Nikolić

Bora’s Laptop



RISC-V (40)

Garcia, Nikolić

 Book title like virtual address

 Library of Congress call number like physical 

address

 Card catalogue like page table, mapping from 

book title to call #

 On card for book, in local library vs. in another 

branch like valid bit indicating in main memory 

vs. on disk (storage)

 On card, available for 2-hour in library use (vs. 

2-week checkout) like access rights

Analogy



RISC-V (41)

Garcia, Nikolić

 Allow multiple processes to simultaneously 

occupy memory and provide protection –

don’t let one program read/write memory 

from another

 Address space – give each program the illusion

that it has its own private memory

 Suppose code starts at address 0x40000000.  But 

different processes have different code, both residing 

at the same address.  So each program has a 

different view of memory.

Memory Hierarchy Requirements





RISC-V (43)

Garcia, Nikolić

 Memory (DRAM)

Memory

Desktop/server

MS Surface Book

Apple A12 Bionic

(DRAM goes on top)

Volatile

Latency to access first word: ~10ns 

(~30-40 processor cycles)

Each successive (0.5ns – 1ns)

Each access brings 64 bits

Supports ‘bursts’



RISC-V (44)

Garcia, Nikolić

 SSD

 Access: 40-100µs

(~100k proc. cycles)

 $0.05-0.5/GB

Storage – “Disk”

• Attached as a peripheral I/O device; Non-volatile

 HDD

 Access: <5-10ms

(10-20M proc. cycles)

 $0.01-0.1/GB



RISC-V (45)

Garcia, Nikolić

Aside … Why are Disks So Slow?

• 10,000 rpm (revolutions per minute)

• 6 ms per revolution

• Average random access time: 3 ms

(~107 processor cycles)



RISC-V (46)

Garcia, Nikolić

 Nick Parlante’s https://cs.stanford.edu/people/nick/how-hard-drive-works/

 Several YouTube videos as well

How Hard Drives Work?



RISC-V (47)

Garcia, Nikolić

 Made with transistors

 Nothing mechanical that turns

 Like “Ginormous” register file

 Does not ”forget” when power is off (non-volatile)

 Fast access to all locations, regardless of address

 Still much slower than register, DRAM

 Read/write blocks, not bytes

 Potential reliability issues

 Some unusual requirements:
 Can’t erase single bits – only entire blocks

What About SSD?



RISC-V (48)

Garcia, Nikolić

 3D array of bit cells (up to 256 layers!)

Flash Memory

Western Digital/Semiengineering





RISC-V (50)

Garcia, Nikolić

Virtual Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor Memory

Bytes

 In a ‘bare metal’ system 

(w/o OS), addresses 

issued with loads/stores 

are real physical 

addresses

 In this mode, any process can issue any address, therefore can access 

any part of memory, even areas which it doesn’t own 

 Ex: The OS data structures 

 We should send all addresses through a mechanism that the OS controls, 

before they make it out to DRAM - a translation mechanism 

 Check that process has permission to access a particular part 

of memory 



RISC-V (51)

Garcia, Nikolić

Virtual Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor Memory

Bytes

100+ Processes, managed by OS

 100’s of processes 

 OS multiplexes these 

over available cores

 But what about memory?

 There is only one!

 We cannot just ”save” its contents in a context switch …



RISC-V (52)

Garcia, Nikolić

Review: Virtual vs. Physical Addresses

 Processes use virtual addresses, e.g., 0 … 0xffff,ffff

 Many processes, all using same (conflicting) addresses

 Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)

 Memory manager maps virtual to physical addresses

Many of these (soft & hardware cores)

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Instruction Cache

Data Cache

Code

V
ir

tu
a

l
A

d
d

re
ss

e
s

Heap

Stack

Unused

Memory

P
h

y
si

ca
l
A

d
d

re
ss

e
s

Static Data

?

0000 0000hex

ffff ffffhex

One main memory



RISC-V (53)

Garcia, Nikolić

Conceptual Memory Manager

Concept; Real memory 

managers use more 

complex mappings

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor



RISC-V (54)

Garcia, Nikolić

1) Map virtual to physical addresses

2) Protection:

 Isolate memory between processes

 Each process gets dedicate ”private” memory

 Errors in one program won’t corrupt memory of other 

program

 Prevent user programs from messing with OS’s memory

3) Swap memory to disk

 Give illusion of larger memory by storing some content on 

disk 

 Disk is usually much larger and slower than DRAM

 Use “clever” caching strategies

Responsibilities of Memory Manager





RISC-V (56)

Garcia, Nikolić

 Concept of “paged memory” dominates

 Physical memory (DRAM) is broken into pages

 Typical page size: 4 KiB+ (on modern OSs)

 Need 12 bits to address 4KiB

Memory Manager and Paged Memory

page number (e.g., 20 Bits) offset (e.g., 12 Bits)

Virtual address (e.g., 32 Bits)



RISC-V (57)

Garcia, Nikolić

Review: Conceptual Memory Manager
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor



RISC-V (58)

Garcia, Nikolić

Paged Memory
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0
Page 1
Page 2

Page N

Each process has a dedicated page table. 

Physical memory non-consecutive.



RISC-V (59)

Garcia, Nikolić

Paged Memory Address Translation
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0

Page 1

Page 2

Page N

page table entry offset 

Virtual address (e.g. 32 Bits)

page number offset 

Physical addresses may (but do not have to) have more or fewer bits 

than virtual addresses

 OS keeps track of which 

process is active

 Chooses correct page table

 Memory manager extracts 

page number from virtual 

address 

 e.g. just top 20 bits

 Looks up page address in 

page table

 Computes physical memory 

address from sum of

 Page address and

 Offset (from virtual address)Physical address



RISC-V (60)

Garcia, Nikolić

Protection
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 1

Page 2

Page N  Assigning different 

pages in DRAM to 

processes also keeps 

them from accessing 

each others memory

 Isolation

 Page tables handled by 

OS

(in supervisory mode)

 Sharing is also possible

 OS may assign same 

physical page to several 

processes



RISC-V (61)

Garcia, Nikolić

Write Protection
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0
Page 1
Page 2

Page N

Exception when writing to a protected page

(e.g. program code)

Write protection



RISC-V (62)

Garcia, Nikolić

 E.g., 32-Bit virtual address, 4-KiB pages

 Single page table size: 

 4 x 220 Bytes = 4-MiB 

 0.1% of 4-GiB memory

 But much too large for a cache!

 Store page tables in memory (DRAM)

 Two (slow) memory accesses per lw/sw on cache miss

 How could we minimize the performance penalty?

 Transfer blocks (not words) between DRAM and processor 

cache

• Exploit spatial locality

 Use a cache for frequently used page table entries …

Where Do Page Tables Reside?



RISC-V (63)

Garcia, Nikolić

Page Table Stored in Memory
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page Table

Page

Page Table

Page

Page Table

Memory (DRAM)

lw/sw take two memory references





RISC-V (65)

Garcia, Nikolić

 In caches, we dealt with individual blocks

 Usually ~64B on modern systems

 In VM, we deal with individual pages

 Usually ~4 KiB on modern systems

 Common point of confusion: 

 Bytes, 

 Words, 

 Blocks, 

 Pages 

 Are all just different ways of looking at memory!

Blocks vs. Pages



RISC-V (66)

Garcia, Nikolić

E.g.: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B blocks (for caches), 

4B words (for lw/sw)

Bytes, Words, Blocks, Pages

Page 3

Page 2

Page 1

Page 0

16 

KiB

Block 0

Block 31

Word 0

Word 31

1 of 1 Memory

1 of 4 Pages per Memory 1 of 32 Blocks per Page

Can think of 

memory as:

• 4 Pages, or

• 128 Blocks, or

• 4096 Words, 

or

• 16,384 Bytes

Can think of a 

page as:

• 32 Blocks, or

• 1024 Words



RISC-V (67)

Garcia, Nikolić

 Book title like virtual address

 Library of Congress call number like physical 

address

 Card catalogue like page table, mapping from 

book title to call #

 On card for book, in local library vs. in another 

branch like valid bit indicating in main memory 

vs. on disk (storage)

 On card, available for 2-hour in library use (vs. 

2-week checkout) like access rights

Review: Analogy



RISC-V (68)

Garcia, Nikolić

Paged Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic 

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)
Page N

Disk

Valid: Page allocated

DRAM/Disk



RISC-V (69)

Garcia, Nikolić

 Check page table entry:

 Valid?

 Yes, valid  In DRAM?

• Yes, in DRAM: read/write data

• No, on disk: allocate new page in DRAM

 If out of memory, evict a page 

from DRAM

 Store evicted page to disk

 Read page from disk into memory

 Read/write data

 Not Valid

• allocate new page in DRAM

 If out of memory, evict a page

 Read/write data

Memory Access

Page fault

OS intervention



RISC-V (70)

Garcia, Nikolić

 Page faults are treated as exceptions
 Page fault handler (yet another function of the 

interrupt/trap handler) does the page table updates and 

initiates transfers

 Updates status bits

 (If page needs to be swapped from disk, perform

context switch)

 Following the page fault, the instruction is re-

executed

Page Fault



RISC-V (71)

Garcia, Nikolić

• Insufficient free memory: malloc() returns NULL

$ gcc OutOfMemory.c; ./a.out

failed to allocate > 131 TiBytes

Remember: Out of Memory



RISC-V (72)

Garcia, Nikolić

 DRAM acts like “cache” for disk

 Should writes go directly to disk (write-through)?

 Or only when page is evicted?

 Which option do you propose?

Write-Through or Write-Back?


