

RISC-V (35)

Garcia, Nikolić

 Virtual memory - Next level in the memory hierarchy:

 Provides program with illusion of a very large main memory:

Working set of “pages” reside in main memory - others are on disk

 Demand paging: Provides the ability to run programs larger than

the primary memory (DRAM)

 Hides differences between machine configurations

 Also allows OS to share memory, protect programs from

each other

 Today, more important for protection than just another

level of memory hierarchy

 Each process thinks it has all the memory to itself

 (Historically, it predates caches)

Virtual Memory

RISC-V (36)

Garcia, Nikolić

Great Idea #3: Principle of Locality / Memory Hierarchy

Extremely fast

Extremely expensive

Tiny capacity

Processor chip

Fast

Priced reasonably

Medium capacity

DRAM chip –e.g.
DDR3/4/5

HBM/HBM2/3

CPU

Registers

CPU Cache

Level 1 (L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Random-Access Memory (RAM)

Virtual Memory

Solid-State Memory (Flash)

Magnetic Disks

Core

Faster

Expensive

Small capacity

(Not so) Fast

Cheap

Large capacity

SSD, HDD

Drives

RISC-V (37)

Garcia, Nikolić

Virtual vs. Physical Addresses

 Processes use virtual addresses, e.g., 0 … 0xffff,ffff

 Many processes, all using same (conflicting) addresses

 Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)

 Memory manager maps virtual to physical addresses

Many of these (soft & hardware cores)

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Instruction Cache

Data Cache

Code

V
ir

tu
a

l
A

d
d

re
ss

e
s

Heap

Stack

Unused

Memory

P
h

y
si

ca
l
A

d
d

re
ss

e
s

Static Data

?

0000 0000hex

ffff ffffhex

One main memory

RISC-V (38)

Garcia, Nikolić

 Address space = set of addresses for all
available memory locations

 Now, two kinds of memory addresses:

 Virtual Address Space

 Set of addresses that the user program knows about

 Physical Address Space

 Set of addresses that map to actual physical locations in
memory

 Hidden from user applications

 Memory manager maps (‘translates’) between
these two address spaces

Address Spaces

RISC-V (39)

Garcia, Nikolić

Bora’s Laptop

RISC-V (40)

Garcia, Nikolić

 Book title like virtual address

 Library of Congress call number like physical

address

 Card catalogue like page table, mapping from

book title to call #

 On card for book, in local library vs. in another

branch like valid bit indicating in main memory

vs. on disk (storage)

 On card, available for 2-hour in library use (vs.

2-week checkout) like access rights

Analogy

RISC-V (41)

Garcia, Nikolić

 Allow multiple processes to simultaneously

occupy memory and provide protection –

don’t let one program read/write memory

from another

 Address space – give each program the illusion

that it has its own private memory

 Suppose code starts at address 0x40000000. But

different processes have different code, both residing

at the same address. So each program has a

different view of memory.

Memory Hierarchy Requirements

RISC-V (43)

Garcia, Nikolić

 Memory (DRAM)

Memory

Desktop/server

MS Surface Book

Apple A12 Bionic

(DRAM goes on top)

Volatile

Latency to access first word: ~10ns

(~30-40 processor cycles)

Each successive (0.5ns – 1ns)

Each access brings 64 bits

Supports ‘bursts’

RISC-V (44)

Garcia, Nikolić

 SSD

 Access: 40-100µs

(~100k proc. cycles)

 $0.05-0.5/GB

Storage – “Disk”

• Attached as a peripheral I/O device; Non-volatile

 HDD

 Access: <5-10ms

(10-20M proc. cycles)

 $0.01-0.1/GB

RISC-V (45)

Garcia, Nikolić

Aside … Why are Disks So Slow?

• 10,000 rpm (revolutions per minute)

• 6 ms per revolution

• Average random access time: 3 ms

(~107 processor cycles)

RISC-V (46)

Garcia, Nikolić

 Nick Parlante’s https://cs.stanford.edu/people/nick/how-hard-drive-works/

 Several YouTube videos as well

How Hard Drives Work?

RISC-V (47)

Garcia, Nikolić

 Made with transistors

 Nothing mechanical that turns

 Like “Ginormous” register file

 Does not ”forget” when power is off (non-volatile)

 Fast access to all locations, regardless of address

 Still much slower than register, DRAM

 Read/write blocks, not bytes

 Potential reliability issues

 Some unusual requirements:
 Can’t erase single bits – only entire blocks

What About SSD?

RISC-V (48)

Garcia, Nikolić

 3D array of bit cells (up to 256 layers!)

Flash Memory

Western Digital/Semiengineering

RISC-V (50)

Garcia, Nikolić

Virtual Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

 In a ‘bare metal’ system

(w/o OS), addresses

issued with loads/stores

are real physical

addresses

 In this mode, any process can issue any address, therefore can access

any part of memory, even areas which it doesn’t own

 Ex: The OS data structures

 We should send all addresses through a mechanism that the OS controls,

before they make it out to DRAM - a translation mechanism

 Check that process has permission to access a particular part

of memory

RISC-V (51)

Garcia, Nikolić

Virtual Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

100+ Processes, managed by OS

 100’s of processes

 OS multiplexes these

over available cores

 But what about memory?

 There is only one!

 We cannot just ”save” its contents in a context switch …

RISC-V (52)

Garcia, Nikolić

Review: Virtual vs. Physical Addresses

 Processes use virtual addresses, e.g., 0 … 0xffff,ffff

 Many processes, all using same (conflicting) addresses

 Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)

 Memory manager maps virtual to physical addresses

Many of these (soft & hardware cores)

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Instruction Cache

Data Cache

Code

V
ir

tu
a

l
A

d
d

re
ss

e
s

Heap

Stack

Unused

Memory

P
h

y
si

ca
l
A

d
d

re
ss

e
s

Static Data

?

0000 0000hex

ffff ffffhex

One main memory

RISC-V (53)

Garcia, Nikolić

Conceptual Memory Manager

Concept; Real memory

managers use more

complex mappings

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

RISC-V (54)

Garcia, Nikolić

1) Map virtual to physical addresses

2) Protection:

 Isolate memory between processes

 Each process gets dedicate ”private” memory

 Errors in one program won’t corrupt memory of other

program

 Prevent user programs from messing with OS’s memory

3) Swap memory to disk

 Give illusion of larger memory by storing some content on

disk

 Disk is usually much larger and slower than DRAM

 Use “clever” caching strategies

Responsibilities of Memory Manager

RISC-V (56)

Garcia, Nikolić

 Concept of “paged memory” dominates

 Physical memory (DRAM) is broken into pages

 Typical page size: 4 KiB+ (on modern OSs)

 Need 12 bits to address 4KiB

Memory Manager and Paged Memory

page number (e.g., 20 Bits) offset (e.g., 12 Bits)

Virtual address (e.g., 32 Bits)

RISC-V (57)

Garcia, Nikolić

Review: Conceptual Memory Manager
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Memory

Bytes

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

RISC-V (58)

Garcia, Nikolić

Paged Memory
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0
Page 1
Page 2

Page N

Each process has a dedicated page table.

Physical memory non-consecutive.

RISC-V (59)

Garcia, Nikolić

Paged Memory Address Translation
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0

Page 1

Page 2

Page N

page table entry offset

Virtual address (e.g. 32 Bits)

page number offset

Physical addresses may (but do not have to) have more or fewer bits

than virtual addresses

 OS keeps track of which

process is active

 Chooses correct page table

 Memory manager extracts

page number from virtual

address

 e.g. just top 20 bits

 Looks up page address in

page table

 Computes physical memory

address from sum of

 Page address and

 Offset (from virtual address)Physical address

RISC-V (60)

Garcia, Nikolić

Protection
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 1

Page 2

Page N Assigning different

pages in DRAM to

processes also keeps

them from accessing

each others memory

 Isolation

 Page tables handled by

OS

(in supervisory mode)

 Sharing is also possible

 OS may assign same

physical page to several

processes

RISC-V (61)

Garcia, Nikolić

Write Protection
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)

Page 0
Page 1
Page 2

Page N

Exception when writing to a protected page

(e.g. program code)

Write protection

RISC-V (62)

Garcia, Nikolić

 E.g., 32-Bit virtual address, 4-KiB pages

 Single page table size:

 4 x 220 Bytes = 4-MiB

 0.1% of 4-GiB memory

 But much too large for a cache!

 Store page tables in memory (DRAM)

 Two (slow) memory accesses per lw/sw on cache miss

 How could we minimize the performance penalty?

 Transfer blocks (not words) between DRAM and processor

cache

• Exploit spatial locality

 Use a cache for frequently used page table entries …

Where Do Page Tables Reside?

RISC-V (63)

Garcia, Nikolić

Page Table Stored in Memory
Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page Table

Page

Page Table

Page

Page Table

Memory (DRAM)

lw/sw take two memory references

RISC-V (65)

Garcia, Nikolić

 In caches, we dealt with individual blocks

 Usually ~64B on modern systems

 In VM, we deal with individual pages

 Usually ~4 KiB on modern systems

 Common point of confusion:

 Bytes,

 Words,

 Blocks,

 Pages

 Are all just different ways of looking at memory!

Blocks vs. Pages

RISC-V (66)

Garcia, Nikolić

E.g.: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B blocks (for caches),

4B words (for lw/sw)

Bytes, Words, Blocks, Pages

Page 3

Page 2

Page 1

Page 0

16

KiB

Block 0

Block 31

Word 0

Word 31

1 of 1 Memory

1 of 4 Pages per Memory 1 of 32 Blocks per Page

Can think of

memory as:

• 4 Pages, or

• 128 Blocks, or

• 4096 Words,

or

• 16,384 Bytes

Can think of a

page as:

• 32 Blocks, or

• 1024 Words

RISC-V (67)

Garcia, Nikolić

 Book title like virtual address

 Library of Congress call number like physical

address

 Card catalogue like page table, mapping from

book title to call #

 On card for book, in local library vs. in another

branch like valid bit indicating in main memory

vs. on disk (storage)

 On card, available for 2-hour in library use (vs.

2-week checkout) like access rights

Review: Analogy

RISC-V (68)

Garcia, Nikolić

Paged Memory

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor

Page table

Page table

Page table

Memory (DRAM)
Page N

Disk

Valid: Page allocated

DRAM/Disk

RISC-V (69)

Garcia, Nikolić

 Check page table entry:

 Valid?

 Yes, valid In DRAM?

• Yes, in DRAM: read/write data

• No, on disk: allocate new page in DRAM

 If out of memory, evict a page

from DRAM

 Store evicted page to disk

 Read page from disk into memory

 Read/write data

 Not Valid

• allocate new page in DRAM

 If out of memory, evict a page

 Read/write data

Memory Access

Page fault

OS intervention

RISC-V (70)

Garcia, Nikolić

 Page faults are treated as exceptions
 Page fault handler (yet another function of the

interrupt/trap handler) does the page table updates and

initiates transfers

 Updates status bits

 (If page needs to be swapped from disk, perform

context switch)

 Following the page fault, the instruction is re-

executed

Page Fault

RISC-V (71)

Garcia, Nikolić

• Insufficient free memory: malloc() returns NULL

$ gcc OutOfMemory.c; ./a.out

failed to allocate > 131 TiBytes

Remember: Out of Memory

RISC-V (72)

Garcia, Nikolić

 DRAM acts like “cache” for disk

 Should writes go directly to disk (write-through)?

 Or only when page is evicted?

 Which option do you propose?

Write-Through or Write-Back?

