

VM (74)

Garcia, Nikolić

 E.g., 32-Bit virtual address, 4-KiB pages

 Single page table size:

 4 x 220 Bytes = 4-MiB

 0.1% of 4-GiB memory

 Total size for 256 processes (each needs a

page table)

 256 x 4 x 220 Bytes = 256 x 4-MiB = 1-GiB

 25% of 4-GiB memory!

 What about 64-bit addresses?

Size of Page Tables

How can we keep the size of page tables “reasonable”?

VM (75)

Garcia, Nikolić

 Increase page size

 E.g., doubling page size cuts PT size
in half

 At the expense of potentially
wasted memory

 Hierarchical page tables

 With decreasing page size

 Most programs use only fraction
of memory

 Split PT in two (or more) parts

 This is done in RISC-V

Options for Page Tables

Code

Heap

Stack

Unused

Memory

Static Data

VM (76)

Garcia, Nikolić

Hierarchical Page Table

Level 1
Page Table
Page size 10b
1024 x 4096B Level 2

Page Tables

12b 4096B

Data Pages

page in primary memory (DRAM)
page in secondary memory (disk)

Root of the Current
Page Table

p1

p2

Virtual
Address

(Processor Register)

PTE of a nonexistent page

p1 p2 offset

01112212231

10-bit
L1 index

10-bit
L2 index

P
h
y
s
ic

a
l
M

e
m

o
ry

Exploits Sparsity of Virtual Address Space Use

Supervisor page table
base register (SPTBR)
in RISC-V

VM (77)

Garcia, Nikolić

Example: 32-b RISC-V

 VPN: Virtual Page Number

 PPN: Physical Page Number

 Page Table Entry (PTE) is 32b and contains:

 PPN[1], PPN[0]

 Status bits for protection and usage (read, write, exec), validity, etc.

VPN[1] VPN[0] offset Virtual address (32 bits)

PPN[1] PPN[0] offset Physical address(34 bits)

10 10 12

12 10 12

PPN[1] PPN[0] RSW D A G U X W R V

12 10 2 1 1 1 1 1 1 1 1

R= 0, W=0, X = 0 points to next level page table;

otherwise it is a leaf PTE

VM (79)

Garcia, Nikolić

Address Translation and Protection

• Every instruction and data access needs address translation

and protection checks

Good VM design should be fast (~one cycle) and space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

Miss

VM (80)

Garcia, Nikolić

Translation Lookaside Buffers (TLB)

Address translation is very expensive!

In a single-level page table, each reference becomes two memory accesses

In a two-level page table, each reference becomes three memory accesses

Solution: Cache some translations in TLB

TLB hit → Single-Cycle Translation

TLB miss → Page-Table Walk to refill

VPN offset

V D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

VM (81)

Garcia, Nikolić

 Typically 32-128 entries, usually fully associative

 Each entry maps a large page, hence less spatial locality

across pages more likely that two entries conflict

 Sometimes larger TLBs (256-512 entries) are 4-8 way

set-associative

 Larger systems sometimes have multi-level (L1 and L2)

TLBs

 Random or FIFO replacement policy

 “TLB Reach”: Size of largest virtual address space

that can be simultaneously mapped by TLB

TLB Designs

VM (82)

Garcia, Nikolić

 Which should we check first: Cache or TLB?

 Can cache hold requested data if corresponding page

is not in physical memory?

 With TLB first, does cache receive VA or PA?

Where Are TLBs Located?

No

PA

CacheVA PA

miss

hit
data

hit

miss

CPU
Main

Memory
TLB

Page
Table

Notice that it is now the

TLB that does

translation, not the Page

Table!

VM (83)

Garcia, Nikolić

Address Translation Using TLB

TLB Tag TLB Index Page Offset

TLB Tag PPN
(used just

like in a

cache)

. . .

TLB

VPN

PPN Page Offset

Tag Index Offset

Virtual Address

Physical Address

Tag Block Data

. . .

Data
Cache

PA split two
different

ways!

Note: TIO for VA & PA unrelated

VM (85)

Garcia, Nikolić

 Handling a TLB miss needs a hardware or software
mechanism to refill TLB
 Usually done in hardware

 Handling a page fault (e.g., page is on disk) needs a precise
trap so software handler can easily resume after retrieving
page

 Protection violation may abort process

VM-related Events in Pipeline

PC
Inst

TLB

Inst.

Cache D Decode E M
Data

TLB

Data

Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

VM (86)

Garcia, Nikolić

Page-Based Virtual-Memory Machine

 Assumes page tables held in untranslated physical memory

PC
Inst.

TLB

Inst.

Cache
D Decode E M

Data

Cache
W+

Page Fault?

Protection violation?

Page Fault?

Protection violation?

Data

TLB

Main Memory (DRAM)

Memory Controller
Physical

Address

Physical

Address

Physical Address

Physical

Address

Page-Table Base
Register

Virtual

Address Physical

Address

Virtual

Address

Hardware Page

Table Walker

Miss? Miss?

(Hardware Page-Table Walk)

VM (87)

Garcia, Nikolić

Address Translation

Virtual Address

TLB

Lookup

Page Table

Walk

Update TLB
Page Fault

(OS loads page)

Protection

Check

Physical

Address

(to cache)

miss hit

the page is

∉ memory ∈ memory
denied permitted

Protection

Fault

hardware

hardware or software

software

SEGFAULTWhere?

Putting it all together

VM (88)

Garcia, Nikolić

Modern Virtual Memory Systems

Protection & Privacy
Several users/processes, each with their
private address space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping Space (Disk)

VA PAmapping

TLB

Illusion of a large, private, uniform store

VM (89)

Garcia, Nikolić

 How does a single processor run many

programs at once?

 Context switch: Changing of internal state of

processor (switching between processes)

 Save register values (and PC) and change value in

Supervisor Page Table Base register (SPTBR)

 What happens to the TLB?

 Current entries are for different process

 Set all entries to invalid on context switch

Review: Context Switching

VM (91)

Garcia, Nikolić

Comparing the Cache and VM

Cache version Virtual Memory version

Block or Line Page

Miss Page Fault

Block Size: 32-64B Page Size: 4K-8KiB

Placement: Fully Associative

Direct Mapped,

N-way Set Associative

Replacement: Least Recently Used

LRU or Random (LRU), FIFO, random

Write Thru or Back Write Back

VM (92)

Garcia, Nikolić

 Virtual Memory is the level of the memory

hierarchy that sits below main memory

 TLB comes before cache, but affects transfer of data

from disk to main memory

 Previously we assumed main memory was lowest

level, now we just have to account for disk accesses

 Same CPI, AMAT equations apply, but now

treat main memory like a mid-level cache

VM Performance

VM (93)

Garcia, Nikolić

Typical Performance Stats

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame

cache block (≈32-64 bytes) page (≈4Ki bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)

cache hit (≈1 cycle) page hit (≈100 cycles)
cache miss (≈100 cycles) page miss (≈5M cycles)

primary
memory

CPU

VM (94)

Garcia, Nikolić

 Memory Parameters:

– L1 cache hit = 1 clock cycles, hit 95% of accesses

– L2 cache hit = 10 clock cycles, hit 60% of L1 misses

– DRAM = 200 clock cycles (≈100 nanoseconds)
– Disk = 20,000,000 clock cycles (≈10 milliseconds)

 Average Memory Access Time (no paging):

– 1 + 5%×10 + 5%×40%×200 = 5.5 clock cycles

 Average Memory Access Time (with paging):

– 5.5 (AMAT with no paging) + ?

Impact of Paging on AMAT (1/2)

VM (95)

Garcia, Nikolić

 Average Memory Access Time (with paging) =

• 5.5 + 5%×40%× (1-HRMem)×20,000,000

 AMAT if HRMem = 99%?

• 5.5 + 0.02×0.01×20,000,000 = 4005.5 (≈728x slower)
• 1 in 20,000 memory accesses goes to disk: 10 sec program

takes 2 hours!

 AMAT if HRMem = 99.9%?

• 5.5 + 0.02×0.001×20,000,000 = 405.5

 AMAT if HRMem = 99.9999%

• 5.5 + 0.02×0.000001×20,000,000 = 5.9

Impact of Paging on AMAT (2/2)

