

VM (97)

Garcia, Nikolić

Memory

Adding I/O

CPU

RISC-V Assembly

C Programs

#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(a0)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1
Project 2

Project 3

+4

Add

clk

addr

inst

IMEM

addr

DMEM

PC

ALU

clk

Reg []

AddrB

AddrA DataA

DataB

AddrD

DataD

Imm.

Gen

DataB

clk

Branch

Comp

+4

Add

Forwarding

control logic

I/O (Input/Output)

Screen Keyboard Storage

VM (98)

Garcia, Nikolić

How to Interact with Devices?

 Assume a program running on a CPU. How

does it interact with the outside world?

 Need I/O interface for keyboards,

network, mouse, display, etc.

 Connect to many types of devices

 Control these devices, respond

to them, and transfer data

 Present them to user

programs so

they are useful

cmd reg.

data reg.

Operating System

Processor Memory

PCI Bus

USB

SATA, SAS, …

VM (99)

Garcia, Nikolić

 What must the processor do for I/O?

 Input: Read a sequence of bytes

 Output: Write a sequence of bytes

 Interface options

a) Special input/output instructions & hardware

b) Memory mapped I/O

 Portion of address space dedicated to I/O

 I/O device registers there (no memory)

 Use normal load/store instructions, e.g. lw/sw

 Very common, used by RISC-V

Instruction Set Architecture for I/O

VM (100)

Garcia, Nikolić

 Certain addresses are not ‘regular memory’

 Instead, they correspond to registers in I/O

devices

Memory Mapped I/O

ctrl reg.

data reg.

0xFFFFFFFF

0x00000000

0x8000000

address

0x7FFFFFFF

Memory-mapped I/O

Program & Data Memory

VM (101)

Garcia, Nikolić

 1 GHz microprocessor I/O throughput:

 4 GiB/s (lw/sw)

 Typical I/O data rates:

 10 B/s (keyboard)

 3 MiB/s (Bluetooth 3.0)

 0.06-1.25 GiB/s (USB 2/3.1)

 7-250 MiB/s (Wifi, depends on standard)

 125 MiB/s (G-bit Ethernet)

 480MiB/s (SATA3 HDD)

 560 MiB/s (cutting edge SSD)

 5GiB/s (Thunderbolt 3)

 32 GiB/s (High-end DDR4 DRAM)

 64 GiB/s (HBM2 DRAM)

 These are peak rates – actual throughput is lower

 Common I/O devices neither deliver nor accept data matching

processor speed

Processor-I/O Speed Mismatch

VM (103)

Garcia, Nikolić

 Device registers generally serve two functions:
 Control Register, says it’s OK to read/write (I/O ready)

[think of a flagman on a road]

 Data Register, contains data

 Processor reads from Control Register in loop
 Waiting for device to set Ready bit in Control reg (0 → 1)

 Indicates “data available” or “ready to accept data”

 Processor then loads from (input) or writes to

(output) data register
 I/O device resets control register bit (1 → 0)

 Procedure called “Polling”

Polling: Processor Checks Status, Then Acts

VM (104)

Garcia, Nikolić

 Input: Read from keyboard into a0

lui t0 0x7ffff #7ffff000 (io addr)

Waitloop: lw t1 0(t0) #read control

andi t1 t1 0x1 #ready bit

beq t1 zero Waitloop

lw a0 4(t0) #data

 Output: Write to display from a1

lui t0 0x7ffff #7ffff000

Waitloop: lw t1 8(t0) #write control

andi t1 t1 0x1 #ready bit

beq t1 zero Waitloop

sw a1 12(t0) #data

“Ready” bit is from processor’s point of view!

I/O Example (Polling)

7ffff000 input ctrl reg

7ffff004 input data reg

7ffff008 output ctrl reg

7ffff00c output data reg

Memory map

VM (105)

Garcia, Nikolić

 Assume for a processor with

 1 GHz clock rate

 Taking 400 clock cycles for a polling operation

 Call polling routine

 Check device (e.g., keyboard or WiFi input available)

 Return

 What’s the percentage of processor time spent polling?

 Example:

 Mouse

 Poll 30 times per second

 Set by requirement not to miss any mouse motion (which

would lead to choppy motion of the cursor on the screen)

Cost of Polling?

VM (106)

Garcia, Nikolić

 Mouse Polling [clocks/sec]

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

 % Processor for polling:

12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%

=> Polling mouse little impact on processor...

(Except that we need to know we should be polling...)

% Processor Time to Poll Mouse

VM (107)

Garcia, Nikolić

 Frequency of Polling Disk (rate at which chunks come

could off disk)= 16 [MB/s] / 16 [B/poll] = 1M [polls/s]

 Disk Polling, Clocks/sec =

1M [polls/s] * 400 [clocks/poll] = 400M [clocks/s]

 % Processor for polling:

400*106 [clocks/s] / 1*109 [clocks/s] = 40%

=> Unacceptable

(Polling is only part of the problem –

accessing in small chunks is inefficient, too)

% Processor Time to Poll Hard Disk

VM (109)

Garcia, Nikolić

 Polling wastes processor resources

 Akin to waiting at the door for guests to show up

 What about a bell?

 Computer lingo for bell:

 Interrupt

 Occurs when I/O is ready or needs attention

 Interrupt current program

 Transfer control to the trap handler in the operating system

 Interrupts:

 No I/O activity: Nothing to do

 Lots of I/O: Expensive – thrashing caches, VM, saving/restoring

state

Alternatives to Polling: Interrupts

VM (110)

Garcia, Nikolić

 Low data rate (e.g. mouse, keyboard)

 Use interrupts. Could poll with the timer interrupt, but why?

 Overhead of interrupts ends up being low

 High data rate (e.g. network, disk)

 Start with interrupts...

 If there is no data, you don't do anything!

 Once data starts coming... Switch to Direct Memory Access (DMA)

Polling, Interrupts and DMA

VM (111)

Garcia, Nikolić

 “Programmed I/O”:

 Standard for ATA hard-disk drives

 CPU execs lw/sw instructions for all data movement to/from devices

 CPU spends time doing two things:

1. Getting data from device to main memory

2. Using data to compute

 Not ideal because …

1. CPU has to execute all transfers, could be doing other work

2. Device speeds don’t align well with CPU speeds

3. Energy cost of using beefy general-purpose CPU where simpler

hardware would suffice

 Until now CPU has sole control of main memory

 5% of CPU cycles on Google Servers spent in memcpy() and

memmove() library routines!*

*Kanev et al., “Profiling a warehouse-scale computer,” ICSA 2015, (June 2015), Portland, OR.

Aside: Programmed I/O

VM (113)

Garcia, Nikolić

 Allows I/O devices to directly read/write main

memory

 New hardware: The DMA Engine

 DMA engine contains registers written by CPU:

 Memory address to place data

 # of bytes

 I/O device #, direction of transfer

 unit of transfer, amount to transfer per burst

Direct Memory Access (DMA)

VM (114)

Garcia, Nikolić

From Section 5.1.4 Direct Memory Access in Modern Operating Systems by Andrew S. Tanenbaum, Herbert Bos, 2014

DMA Illustration

VM (115)

Garcia, Nikolić

1. Receive interrupt from device

2. CPU takes interrupt, initiates transfer

 Instructs DMA engine/device to place data @ certain

address

3. Device/DMA engine handle the transfer

 CPU is free to execute other things

4. Upon completion, Device/DMA engine

interrupt the CPU again

DMA: Incoming Data

VM (116)

Garcia, Nikolić

1. CPU decides to initiate transfer, confirms that

external device is ready

2. CPU begins transfer

 Instructs DMA engine/device that data is available @

certain address

3. Device/DMA engine handle the transfer

 CPU is free to execute other things

4. Device/DMA engine interrupt the CPU again to

signal completion

DMA: Outgoing Data

VM (117)

Garcia, Nikolić

 Where in the memory hierarchy do we plug in

the DMA engine? Two extremes:

 Between L1$ and CPU:

 Pro: Free coherency

 Con: Trash the CPU’s working set with transferred

data

 Between Last-level cache and main memory:

 Pro: Don’t mess with caches

 Con: Need to explicitly manage coherency

DMA: Some New Problems

VM (119)

Garcia, Nikolić

 Originally sharing I/O devices between

computers

 E.g., printers

 Then communicating between computers

 E.g., file transfer protocol

 Then communicating between people

 E.g., e-mail

 Then communicating between networks of

computers

 E.g., file sharing, www, …

Networks: Talking to the Outside World

VM (120)

Garcia, Nikolić

 History

 1963: JCR Licklider, while
at DoD’s ARPA, writes a
memo describing desire to
connect the computers at
various research
universities: Stanford,
Berkeley, UCLA, ...

 1969 : ARPA deploys 4
“nodes” @ UCLA, SRI,
Utah, & UCSB

 1973 Robert Kahn & Vint
Cerf invent TCP, now part
of the Internet Protocol
Suite

 Internet growth rates

 Exponential since start!

The Internet (1962) www.computerhistory.org/internet_history

www.greatachievements.org/?id=3736
en.wikipedia.org/wiki/Internet_Protocol_Suite

“Lick”

Vint Cerf

VM (121)

Garcia, Nikolić

 “System of interlinked

hypertext documents on the

Internet”

 History

 1945: Vannevar Bush describes

hypertext system called

“memex” in article

 1989: Sir Tim Berners-Lee

proposed and implemented the

first successful communication

between a Hypertext Transfer

Protocol (HTTP) client and

server using the internet.

 ~2000 Dot-com entrepreneurs

rushed in, 2001 bubble burst

 Today : Access anywhere!

The World Wide Web (1989)

en.wikipedia.org/wiki/History_of_the_World_Wide_Web

Tim Berners-Lee

World’s First web

server in 1990

VM (122)

Garcia, Nikolić

 SW Send steps
1: Application copies data to OS buffer

2: OS calculates checksum, starts timer

3: OS sends data to network interface HW and says start

 SW Receive steps
3: OS copies data from network interface HW to OS

buffer

2: OS calculates checksum, if OK, send ACK; if not, delete
message (sender resends when timer expires)

1: If OK, OS copies data to user address space, & signals
application to continue

Software Protocol to Send and Receive

Header Payload

Checksum

Trailer

CMD/ Address /Data
Net ID Net ID Len

ACK

INFO

Dest Src

VM (123)

Garcia, Nikolić

 Traditionally, a Network Interface Card (NIC)

 Wired or wireless

 Transfers data by using programmed I/O (old)

or DMA (new)

What do we need?

VM (124)

Garcia, Nikolić

 We have figured out how computers work!

 And figured out how the OS works and how to interact

with it

 We have built a virtual memory system

 And have developed understanding of physical

memory, storage devices

 And we can attach peripherals for I/O!

“And In conclusion…”

