
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Thread-Level Parallelism I

Thread-Level Parallelism I (3)

Garcia, Nikoli�

1. Increase clock rate fs
ú Reached practical maximum for today’s technology
ú < 5GHz for general purpose computers

2. Lower CPI (cycles per instruction)
ú SIMD, “instruction level parallelism”

3. Perform multiple tasks simultaneously
ú Multiple CPUs, each executing different program
ú Tasks may be related

 E.g. each CPU performs part of a big matrix multiplication

ú or unrelated
 E.g. distribute different web http requests over different computers
 E.g. run pptx (view lecture slides) and browser (youtube)

simultaneously

4. Do all of the above:
ú High fs , SIMD, multiple parallel tasks

Improving Performance

3

Today’s lecture

Thread-Level Parallelism I (4)

Garcia, Nikoli�

New-School Machine Structures

Parallel Requests
Assigned to computer

e.g., Search “Cats”

Parallel Threads
Assigned to core e.g., Lookup, Ads

Parallel Instructions
>1 instruction @ one time

e.g., 5 pipelined instructions

Parallel Data
>1 data item @ one time

e.g., Add of 4 pairs of words

Hardware descriptions
All gates work in parallel at same time

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Logic Gates

Core Core

…Memory (Cache)

Input/ Output

Computer

Main Memory

Exec. Unit(s) Functional
Block(s)

A0+B0 A1+B1

Out = AB+CD

A

B

C

D

Harness
Parallelism &
Achieve High
Performance

Thread-Level Parallelism I (5)

Garcia, Nikoli�

Parallel Computer Architectures

Several separate computers,

some means for communication

(e.g., Ethernet)

Massive array of computers,

fast communication between processors

Multi-core CPU:

1 datapath in single chip

share L3 cache, memory, peripherals

Example: Hive machines

GPU “graphics processing unit”

Thread-Level Parallelism I (6)

Garcia, Nikoli�

Example: CPU with Two Cores

Processor “Core” 1

Control

Datapath
PC

Registers

(ALU)

Memory
Input

Output

Bytes

I/ O-Memory Interfaces

Processor 0 Memory Accesses

Processor “Core” 2

Control

Datapath
PC

Registers

(ALU)

Processor 1

Memory

Accesses

Thread-Level Parallelism I (7)

Garcia, Nikoli�

§ Each processor (core) executes its own instructions

§ Separate resources (not shared)
ú Datapath (PC, registers, ALU)
ú Highest level caches (e.g., 1st and 2nd)

§ Shared resources
ú Memory (DRAM)
ú Often 3rd level cache

 Often on same silicon chip
 But not a requirement

§ Nomenclature
ú “Multiprocessor Microprocessor”
ú Multicore processor

 E.g., four core CPU (central processing unit)
 Executes four different instruction streams simultaneously

Multiprocessor Execution Model

þ

Thread-Level Parallelism I (9)

Garcia, Nikoli�

Sequential App

Performance

Transition to Multicore

Thread-Level Parallelism I (10)

Garcia, Nikoli�

Sequential App

Performance

Transition to Multicore

Thread-Level Parallelism I (11)

Garcia, Nikoli�

Apple A14 Chip (in their latest phones)

Thread-Level Parallelism I (12)

Garcia, Nikoli�

§ Shared memory
ú Each “core” has access to the entire memory in the processor
ú Special hardware keeps caches consistent (next lecture!)
ú Advantages:

 Simplifies communication in program via shared variables

ú Drawbacks:
 Does not scale well:

" “Slow” memory shared by many “customers” (cores)
" May become bottleneck (Amdahl’s Law)

§ Two ways to use a multiprocessor:
ú Job-level parallelism

 Processors work on unrelated problems
 No communication between programs

ú Partition work of single task between several cores
 E.g., each performs part of large matrix multiplication

Multiprocessor Execution Model

Thread-Level Parallelism I (13)

Garcia, Nikoli�

§ It’s difficult!

§ It’s inevitable
ú Only path to increase performance
ú Only path to lower energy consumption (improve battery life)

§ In mobile systems (e.g., smart phones, tablets)
ú Multiple cores
ú Dedicated processors, e.g.,

 Motion processor, image processor, neural processor in iPhone 8
+ X

 GPU (graphics processing unit)

§ Warehouse-scale computers (next week!)
ú Multiple “nodes”

 “Boxes” with several CPUs, disks per box

ú MIMD (multi-core) and SIMD (e.g. AVX) in each node

Parallel Processing

Thread-Level Parallelism I (14)

Garcia, Nikoli�

Potential Parallel Performance
(assuming software can use it)

Year Cores SIMD bits / Core
Core *

SIMD bits

Total, e.g.

FLOPs/ Cycle

2003 2 128 256 4

2005 4 128 512 8

2007 6 128 768 12

2009 8 128 1024 16

2011 10 256 2560 40

2013 12 256 3072 48

2015 14 512 7168 112

2017 16 512 8192 128

2019 18 1024 18432 288

2021 20 1024 20480 320

2.5X 8X 20X

MIMD SIMD MIMD
& SIMD+2/

2yrs

2X/

4yrs

12
years

20 x in 12 years

201/ 12 = 1.28 x à 28% per year or 2x every 3 years!

IF (!) we can use it

þ

Thread-Level Parallelism I (16)

Garcia, Nikoli�

PID TTY TIME CMD
220 ?? 0:04.34 /usr/libexec/UserEventAgent (Aqua)

222 ?? 0:10.60 /usr/sbin/distnoted agent
224 ?? 0:09.11 /usr/sbin/cfprefsd agent

229 ?? 0:04.71 /usr/sbin/usernoted
230 ?? 0:02.35 /usr/libexec/nsurlsessiond

232 ?? 0:28.68 /System/Library/PrivateFrameworks/CalendarAgent.framework/Executables/CalendarAgent
234 ?? 0:04.36 /System/Library/PrivateFrameworks/GameCenterFoundation.framework/Versions/A/gamed

235 ?? 0:01.90 /System/Library/CoreServices/cloudphotosd.app/Contents/MacOS/cloudphotosd
236 ?? 0:49.72 /usr/libexec/secinitd

239 ?? 0:01.66 /System/Library/PrivateFrameworks/TCC.framework/Resources/tccd
240 ?? 0:12.68 /System/Library/Frameworks/Accounts.framework/Versions/A/Support/accountsd

241 ?? 0:09.56 /usr/libexec/SafariCloudHistoryPushAgent
242 ?? 0:00.27 /System/Library/PrivateFrameworks/CallHistory.framework/Support/CallHistorySyncHelper

243 ?? 0:00.74 /System/Library/CoreServices/mapspushd
244 ?? 0:00.79 /usr/libexec/fmfd

246 ?? 0:00.09 /System/Library/PrivateFrameworks/AskPermission.framework/Versions/A/Resources/askpermissiond
248 ?? 0:01.03 /System/Library/PrivateFrameworks/CloudDocsDaemon.framework/Versions/A/Support/bird

249 ?? 0:02.50 /System/Library/PrivateFrameworks/IDS.framework/identityservicesd.app/Contents/MacOS/identityservicesd
250 ?? 0:04.81 /usr/libexec/secd

254 ?? 0:24.01 /System/Library/PrivateFrameworks/CloudKitDaemon.framework/Support/cloudd
258 ?? 0:04.73 /System/Library/PrivateFrameworks/TelephonyUtilities.framework/callservicesd

267 ?? 0:02.15 /System/Library/CoreServices/AirPlayUIAgent.app/Contents/MacOS/AirPlayUIAgent --launchd
271 ?? 0:03.91 /usr/libexec/nsurlstoraged

274 ?? 0:00.90 /System/Library/PrivateFrameworks/CommerceKit.framework/Versions/A/Resources/storeaccountd
282 ?? 0:00.09 /usr/sbin/pboard

283 ?? 0:00.90 /System/Library/PrivateFrameworks/InternetAccounts.framework/Versions/A/XPCServices/
com.apple.internetaccounts.xpc/Contents/MacOS/com.apple.internetaccounts

285 ?? 0:04.72 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/ATS.framework/Support/fontd
291 ?? 0:00.25 /System/Library/Frameworks/Security.framework/Versions/A/Resources/CloudKeychainProxy.bundle/

Contents/MacOS/CloudKeychainProxy
292 ?? 0:09.54 /System/Library/CoreServices/CoreServicesUIAgent.app/Contents/MacOS/CoreServicesUIAgent

293 ?? 0:00.29 /System/Library/PrivateFrameworks/CloudPhotoServices.framework/Versions/A/Frameworks/
CloudPhotoServicesConfiguration.framework/Versions/A/XPCServices/com.apple.CloudPhotosConfiguration.xpc/Contents/MacOS/

com.apple.CloudPhotosConfiguration
297 ?? 0:00.84 /System/Library/PrivateFrameworks/CloudServices.framework/Resources/com.apple.sbd

302 ?? 0:26.11 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
303 ?? 0:09.55 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer

…156 total at this moment… How does my laptop do this?

Imagine doing 156 assignments all at the same time!

Programs Running on a typical Computer

unix% ps -x

Thread-Level Parallelism I (17)

Garcia, Nikoli�

§ A Thread stands for “ thread of execution” , is a

single stream of instructions

ú A program / process can split, or fork itself into
separate threads, which can (in theory) execute
simultaneously.

ú An easy way to describe/think about parallelism

§ With a single core, a single CPU can execute

many threads by Time Sharing
CPU
Time

Thread0

Thread1

Thread2

Threads (1)

Thread-Level Parallelism I (18)

Garcia, Nikoli�

§ Sequential flow of instructions that performs some task
ú Up to now we just called this a “program”

§ Each thread has:
ú Dedicated PC (program counter)
ú Separate registers
ú Accesses the shared memory

§ Each physical core provides one (or more)
ú Hardware threads that actively execute instructions
ú Each executes one “hardware thread”

§ Operating system multiplexes multiple
ú Software threads onto the available hardware threads
ú All threads except those mapped to hardware threads are waiting

Threads (2)

Thread-Level Parallelism I (19)

Garcia, Nikoli�

“Although threads seem to be a small step from

sequential computation, in fact, they represent a huge

step. They discard the most essential and appealing

properties of sequential computation: understandability,

predictability, and determinism. Threads, as a model of

computation, are wildly non-deterministic, and the job of

the programmer becomes one of pruning that

nondeterminism.”

— The Problem with Threads,

Edward A. Lee, UC Berkeley, 2006

Thoughts about Threads

Thread-Level Parallelism I (20)

Garcia, Nikoli�

Give illusion of many “simultaneously” active threads

1. Multiplex software threads onto hardware threads:
a) Switch out blocked threads (e.g., cache miss, user input,

network access)
b) Timer (e.g., switch active thread every 1 ms)

2. Remove a software thread from a hardware thread by
a) Interrupting its execution
b) Saving its registers and PC to memory

3. Start executing a different software thread by
a) Loading its previously saved registers into a hardware thread’s

registers
b) Jumping to its saved PC

Operating System Threads

Thread-Level Parallelism I (21)

Garcia, Nikoli�

Example: Four Cores

Thread pool:

List of threads competing for processor

OS maps threads to cores and schedules

logical (software) threads

Core 2

Each “Core” actively runs one instruction stream at a time

Core 1 Core 3 Core 4

þ

Thread-Level Parallelism I (23)

Garcia, Nikoli�

§ Typical scenario:

ú Active thread encounters cache miss

ú Active thread waits ÿ 1000 cycles for data from DRAM

à switch out and run different thread until data available

§ Problem

ú Must save current thread state and load new thread state

 PC, all registers (could be many, e.g. AVX)

àmust perform switch in j 1000 cycles

§ Can hardware help?

ú Moore’s Law: transistors are plenty

Multithreading

Thread-Level Parallelism I (24)

Garcia, Nikoli�

" Two copies of PC and Registers inside

processor hardware

" Looks identical to two processors to software

(hardware thread 0, hardware thread 1)

" Hyper-Threading:

" Both threads can be active simultaneously

Hardware Assisted Software Multithreading

Memory
Input

Output

Bytes

I/ O-Memory Interfaces

Processor (1Core, 2 Threads)

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

Thread-Level Parallelism I (25)

Garcia, Nikoli�

§ Simultaneous Multithreading (HT): Logical CPUs > Physical CPUs

ú Run multiple threads at the same time per core

ú Each thread has own architectural state (PC, Registers, etc.)

ú Share resources (cache, instruction unit, execution units)

ú See http://dada.cs.washington.edu/smt/

Hyper-Threading

http://dada.cs.washington.edu/smt/

Thread-Level Parallelism I (26)

Garcia, Nikoli�

§ Logical threads
ú j 1% more hardware
ú j 10% (?) better performance

 Separate registers
 Share datapath, ALU(s), caches

§ Multicore
ú => Duplicate Processors
ú j 50% more hardware
ú j 2X better performance?

§ Modern machines do both
ú Multiple cores with multiple threads per core

Multithreading

Thread-Level Parallelism I (27)

Garcia, Nikoli�

$ sysctl hw

hw.physicalcpu: 4

hw.logicalcpu: 8

§ 4 Cores
§ 8 Threads total

Dan’s Laptop (cf Activity Monitor)

Thread-Level Parallelism I (28)

Garcia, Nikoli�

Intel® Xeon® W-3275M Processor

https:/ / www.intel.com/ content/ www/ us

/ en/ products/ processors/ xeon/ w-

processors/ w-3275m.html

Thread-Level Parallelism I (29)

Garcia, Nikoli�

Example: 6 Cores, 24 Logical Threads

Thread pool:

List of threads competing for processor

OS maps threads to cores and schedules

logical (software) threads

Thread 1

Core 2

Thread 2

Thread 3

Thread 4

Thread 1

Core 6

Thread 2

Thread 3

Thread 4

Thread 1

Core 4

Thread 2

Thread 3

Thread 4

Thread 1

Core 5

Thread 2

Thread 3

Thread 4

Thread 1

Core 3

Thread 2

Thread 3

Thread 4

Thread 1

Core 1

Thread 2

Thread 3

Thread 4

4 Logical threads per core (hardware) thread

Thread-Level Parallelism I (30)

Garcia, Nikoli�

§ Thread Level Parallelism
ú Thread: sequence of instructions, with own

program counter and processor state (e.g.,
register file)

ú Multicore:
 Physical CPU: One thread (at a time) per CPU, in

software OS switches threads typically in response
to I/O events like disk read/write

 Logical CPU: Fine-grain thread switching, in
hardware, when thread blocks due to cache
miss/memory access

 Hyper-Threading aka Simultaneous Multithreading
(SMT): Exploit superscalar architecture to launch
instructions from different threads at the same time!

Review: Definitions

Thread-Level Parallelism I (31)

Garcia, Nikoli�

§ Sequential software execution speed is limited
ú Clock rates flat or declining

§ Parallelism the only path to higher performance
ú SIMD: instruction level parallelism

 Implemented in all high perf. CPUs today (x86, ARM, …)
 Partially supported by compilers
 2X width every 3-4 years

ú MIMD: thread level parallelism
 Multicore processors
 Supported by Operating Systems (OS)
 Requires programmer intervention to exploit at single program level (we see later)
 Add 2 cores every 2 years (2, 4, 6, 8, 10, …)

" Intel Xeon W-3275: 28 Cores, 56 Threads

ú SIMD & MIMD for maximum performance

§ Key challenge: craft parallel programs with high performance on
multiprocessors as # of processors increase – i.e., that scale
ú Scheduling, load balancing, time for synchronization, overhead communication

And, in Conclusion, …

þ

