Great Ideas

N
UC Berkel - UC Berkel
Teaching IrF’rzfeeyssor CO m p Uter ArCh |teCt ure Profersseo?y
Dan Garcia (@.k.a. Machine Sructures) Bora Nikoli¢

Thread-Level Parallelism |l

Garcia, Nikoli¢ |
§E§£1§SR1N§Y cs6lc.org @

Parallel
Programming
Languages

6ic

Languages Supporting Parallel Programming

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALIA
APL = LabVIBN cala
Axum Bffel Limbo SN
Chapel Erlang Linda R
Cilk Fortan 90 MultiLisp Sackless Python
Clean Go Modula-3 QuperPascal
Clojure lo Occam VHDL
Concurrent G Janus occam-T XC
Which one to pick?
' Garcia, Nikolic"
1ég}z}gﬁl«?y Thread-Level Parallelism Il (3)

Why So Many Parallel Programming Languages?

= Why “intrinsics” ?
o TO Intel: fix your #()&$! compiler, thanks. ..

= |t's happening ... but

= SIMD features are continually added to compilers
(Intel, gcc)

o |ntense area of research

= Research progress:

= 20+ years to translate C into good (fast!) assembly

- How long to translate C into good (fast!) parallel code?
General problem is very hard to solve
Present state: specialized solutions for specific cases
Your opportunity to become famous!

Garcia, Nikoli¢

Jéggg}ggnlgy Thread-Level Parallelism Il (4) "

Parallel Programming Languages

= Number of choices is indication of
= No universal solution
- Needs are very problem specific

= E.Q,
- Scientific computing/machine learning (matrix multiply)
- Webserver: handle many unrelated requests simultaneously

- Input / output: it’s all happening simultaneously!
= Joecialized languages for different tasks

= Some are easier to use (for some problems)
= None is particularly “easy” to use

= 61C

= Parallel language examples for high-performance
computing
o OpenMP |Z[

B k 1 ' Garcia, NikoIi(:‘
””””” S Thread-Level Parallelism Il (5) @

o1t

Parallel Loops

= Serial execution:
for (int i1=0; i<100;

= Parallel Execution:

i++) {

for (int i=0; i<25; i++)

{

}

for (int

{
}

i=25; i<50; i++) for (int i=50; i<75; i++)

{

}

for (int i=75; i<100; i++)

{

}

IIIIIIIIIIIIIIIIIIIIII

Thread-Level Parallelism 1l (7)

Garcia, Nikoli¢

()OO

Parallel for in OpenMP

#include <omp.h>

#pragma omp parallel for
for (int 1=0; 1<100; i++) {

Garcia, Nikoli¢

J%Egglgglgy Thread- Level Parallelism Il (8) "

(NN NN

LA A B N

L A B B N

OpenMP Example

/* clang —Xpreprocessor —-fopenmp -lomp -0 for for.c x/

include <stdio.h>
include <omp.h>
nt main()

*

| A bt

omp_set_num_threads(4);
int al[l ={eo, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int N = sizeof(a)/sizeof(int);

1

2

3

4

5

6

7

8

9

10

11 #pragma omp parallel for

12 for (int i=0; i<N; i++) {

13 printf("thread %d, i = %2d\n",

14 omp_get_thread_num(), i);

15 ali] = alil + 10 x omp_get_thread_num();
16
17
18
19

by

for (int i=@; i<N; i++) printf("%02d ", alil);
printf("\n");

20 }

$ gcc-5 -fopenmp for.c;./a.out

% gcc -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for

thread 0, 1 = 0
thread 2, i = 6
thread 0, i = 1
thread 2, i = 7
thread 0, 1 = 2
00 01 02 26 27

The call to find the maximum number of threads that are available to do work is

omp get max threads() (from omp.h).

Berkeiey

UNIVERSITY OF CALIFORNIA

Thread- Level Parallelism Il (9)

Garcia, Nikoli¢

(OO

OpenMP

= Cextension: no new language to learn
= Multi-threaded, shared-memory
parallelism
= Compiler Directives, #pragma
= Runtime Library Routines, #include <omp.h>
= }pragma
= |gnored by compilers unaware of OpenMP

= Same source for multiple architectures
- E.g., same program for 1 & 16 cores

= Only works with shared memory

B k 1 ' Garcia, Nikolié‘
””””” S Thread- Level Parallelism Il (10) @

OpenMP Programming Model

= Fork - Join Model:

master
thread

{ parallel region } { parallel region }

= OpenMP programs begin as single process (main thread)
o Sequential execution

= When parallel region is encountered
o Master thread “forks” into team of parallel threads
o Executed simultaneously

o At end of parallel region, parallel threads “join”, leaving only master
thread

= Process repeats for each parallel region
o Amdahl’s Law?

B k 1 ' Garcia, NikoIi(:‘
SRSy Thread-Level Parallelism I (11) (co)

sic: What Kind of Threads?

= OpenMP threads are operating system
(software) threads

= OSwill multiplex requested OpenMP threads
onto available hardware threads

= Hopefully each gets a real hardware thread
to run on, so no OS-level time-multiplexing

= But other tasks on machine compete for
hardware threads!

= Be “careful” (?) when timing results for
Projects!

o 5AM?
: ?
Job queue” V]

B€I‘k€1€ ~ Garcia, Nikoli¢.
...................... Y Thread-Level Parallelism Il (12)

Computing ©t

Example 2: Computing

In[1]:=
Out[1l]= P1
In[2]:= Integrate[(4/(1+xA2)) , {x,0,1}]
Out[2]= P1i

Numerical Integration
Mathematically, we know that:

1
4.0
S dx=1TC

AN (1+2)

4.0 (-

o \ We can approximate the
2 \ integral as a sum of
=20 \ rectangles:

<

] N

T }Emesz1t

i=0

Where each rectangle has
0.0 X 10 width Ax and height F(x,) at
the middle of interval i.

http:// openmp.org/ mp-documents/ omp-hands-on-SC08.pdf

1%&};1&%1&}7 Thread-Level Parallelism Il (14)

Integrate[4*Sqgrt[1-xA2] , {x,0,1}] < Tested using Mathematica

Garcia, Nikoli¢

()OO

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

6ic Seq uential 7t = 3.us92653589793238462643383270502884 197169399375 1...

#inc lude tdio.

void main () {

const long num_steps = 10;

double step = 1.6/((double)num_steps);

double sum = 0.0;

for (int 1=0; i<num_steps; i++) {
double x = (1+0.5) *xstep;
sum += 4.0*xstep/(1.0+x*x);

}

printf ("pi 6.127\n", sum);

}
pi = 3.142425985001

 Resembles &, but not very accurate
* Let’'s increase num_steps and parallelize

B k 1 ' Garcia, Nikolié‘
””””” g TEFC‘E"SY Thread- Level Parallelism Il (15) @

® Parallelize (1) ...

#include <stdio.!

void main () {
const long num_steps = 10;
double step = 1.0/((double)num_steps);
double sum = 0.0;
#pragma parallel for D
for (int 1i=0; i<num_steps; i++) {
double x = (i+0.5) *step;

sum += 4.0*Step/(1.0+X*X); _
}

printf ("pi s6.12f\n", sum); Problem: each thread
} needs access to the
shared variable sum
« Code runs sequentially

Garcia, Nikoli¢

ﬁg{,}gﬁl&y Thread- Level Parallelism Il (16) "

Parallelize) ...

1. Compute
sum[0] and sum[1]
in parallel

4.0

2. Compute
sum = sum[O]+sum[1]
sequentially

F(x) = 4.0/(1+x2)

0.0 X
sum[O0] sum[1]

Garcia, Nikoli¢

ﬁg{,}gﬁl&}’ Thread- Level Parallelism Il (17) "

Parallel ... Trial Run

#1ncC lude <stdio.h= : J— : -
#include <omp.h> AL 1 ’ 1d 1
void main () {

const int NUM_THREADS = 4; L . —

const long num_steps = 10; 1 2 ’ id 2

double step = 1.0/((double)num_steps); . : _
double sum[NUM_THREADS]; 1= 3, id = 3
for (int i=0; i<NUM_THREADS; i++) sum[i] = @;

omp_set_num_threads (NUM_THREADS); L = S 4 id = 1
#pragma omp parallel
{
int id = omp_get_thread_num(); . .
for (int i=id; i<num_steps; i+=NUM THREADS) { 1 = 6 ’ id = 2
double x = (i+@.5) *step; . .
sum[id] += 4.0@%step/(1.0+x*x); 1l = 7 ’ id = 3
printf("1i =%3d, id =%3d\n", 1, id); . .
double pi = 0;
for (int i1=0; i<NUM_THREADS; i++) pi += sum[i];)
printf ("pi = %6.12f\n", pi); p1 = 3.142425985001

B k 1 , Garcia, NikoIi(:‘
SRSy Thread-Level Parallelism Il (18) @I0E®

(NN NN

Scale up: num steps = 10°

#include <stdio.h
#inc lude

void main () {
const int NUM_THREADS = 4;
const long num_steps = 1000000;
double step = 1.0/((double)num_steps);
double sum[NUM_THREADS];
for (int i=0; i<NUM_THREADS; i++) sum[i] = 0;
omp_set_num_threads (NUM_THREADS) ;
#pragma omp parallel
{
int id = omp_get_thread_num();
for (int i=id; i<num_steps; i+=NUM_THREADS) {
double x = (1i+0.5) *step;
sum[id] += 4.0%step/(1.0+x*x);

}
}
double pi = 0;
for (int i=@; i<NUM_THREADS; i++) pi += sum[i];
printf ("p! %6.127T\n", pi);

Berkeley

UNIVERSITY OF CALIFORNIA

Thread- Level Parallelism Il (19)

pi =
3.141592653590

You verify how many
digits are correct ...

Garcia, Nikoli¢

(0 DOO

L A B B N

Can We Parallelize Computing sum?

#include <stdio.h
¥1include <omp.h: Always looking for ways to
void main () { beat Amdahl’s Law ...

const int NUM_THREADS = 1000;

const long num_steps = 100000;

double step = 1.0/((double)num_steps);

double sum[NUM_THREADS];

for (int 1=0; i<NUM_THREADS; i++) sum[i] = 0;

double pi = 0;

omp_set_num_threads (NUM_THREADS) ; ST
:.ioragl‘.ag—':"' p parallel - ummation inside parallel

{ section
int id = omp_get_thread_num();

for (int i=id; i<num_steps; i+=NUM_THReaps) { ° Insignificant speedup in this

s R e TR example, but ...
: sum[id] += 4.0*step/(1.0+x*x); . pi _3.138450662641
: pi += sum(id]; <G ———— \\rONg! And value changes
printf ("pi = %6.12f\n", pi); between r.uns?!
¥ * What's going on?

Garcia, Nikoli¢

J%Egglggnlgy Thread- Level Parallelism Il (20) "

(NN NN

What's Going On*?

#include <stdio.h
#include <omp.h>

void main () {
const int NUM_THREADS = 1000,
const long num_steps = 100000;
double step = 1.0/((double)num_steps);
double sum[NUM_THREADS];
for (int 1=0; i<NUM_THREADS; i++) sum[i] = 0;
double pi = 0;

omp_set_num_threads(NUM_THREADS); * Operation is really
#pragma omp parallel pi = pi + sum[id]
{ | | Whatif >1threads reads current
int id = omp_get_thread_num(); (same) value of pi, computes the

for (int i=id; i<num_steps; i+=NUM_THREADS) {

%,
double x = (i+0.5) *step; sum, stores the result back to pi*

sum[id] += 4.@xstep/(1.0+x*x); * Each processor reads same
} intermediate value of pi!
pi += sum(id]; < —— ——— . Pcsult depends on who gets there
i) T when
} printf ("pl = %6.127\n", pi); « A“race” > resultis

not deterministic

B k 1 ' Garcia, NikoIi(:‘
SRSy Thread-Level Parallelism Il (21) (cc)

Synchronization

&i8: Synchronization
= Problem:
= Limit access to shared resource to 1 actor at a time

= E.g. only 1 person permitted to edit a file at a time
- otherwise changes by several people get all mixed up

= Solution:

* Take turns:
* Only one person get’s the
microphone & talks at a time
* Also good practice for
classrooms, btw ...

Garcia, Nikoli¢

%SJ;!&ERIN?Y Thread- Level Parallelism Il (23) "

Locks

= Computers use locks to control access
to shared resources
= Serves purpose of microphone in example
= Also referred to as “semaphore”

= Usually implemented with a variable
o int lock;
= 0 for unlocked
- 1 for locked

B I‘k 1 ~ Garcia, Nikoli¢
“““““ S Thread-Level Parallelism 1l (24)

« ‘Il

3 Synchronization with Locks

o

while (lock != 0)

7
lock = 1;
// access shared resource ...

// e.g. pi
// sequential execution! (Amdahl ...)

lock = 0;

Garcia, Nikoli¢

NNNNNNNNNNNNNNNNNNNNNN Thread-Level Parallelism Il (25) @

Lock Synchronization
Thread 1 Thread 2

while (lock != 0) ;

while (lock != 0) ;

lock « Thread 2 finds lock not set,
before thread 1sets it
* Both threads believe they got
and set the lock!

li
=
we

lock

1;

lock

0;
lock

0;

Try as you like, this problem has no solution, not even at the assembly level.
Unless we introduce new instructions, that is! (next lecture)

B k 1 ' Garcia, Nikolié‘
SRSy Thread-Level Parallelism Il (26) (o)

ste: And, in Conclusion, ...

= OpenMP as simple parallel extension to C

= Threads level programming with
parallel for pragma

=~ C: small so easy to learn, but not very high
level and it's easy to get into frouble
= Race conditions —result of program
depends on chance (bad)

= Need assembly-level instructions to help with
lock synchronization

o ...next time]

B k 1 ' Garcia, Nikolié‘
””””” S Thread-Level Parallelism Il (27) @

