
UC Berkeley

Teaching Professor

Dan Garcia

UC Berkeley

Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Thread-Level Parallelism II

Thread-Level Parallelism II (3)

Garcia, Nikoli�

ActorScript Concurrent Pascal JoCaml Orc

Ada Concurrent ML Join Oz

Afnix Concurrent Haskell Java Pict

Alef Curry Joule Reia

Alice CUDA Joyce SALSA

APL E LabVIEW Scala

Axum Eiffel Limbo SISAL

Chapel Erlang Linda SR

Cilk Fortan 90 MultiLisp Stackless Python

Clean Go Modula-3 SuperPascal

Clojure Io Occam VHDL

Concurrent C Janus occam-Ã XC

Languages Supporting Parallel Programming

Which one to pick?

Thread-Level Parallelism II (4)

Garcia, Nikoli�

§ Why “ intrinsics”?

ú TO Intel: fix your #()&$! compiler, thanks…

§ It’s happening ... but
ú SIMD features are continually added to compilers

(Intel, gcc)

ú Intense area of research

ú Research progress:
 20+ years to translate C into good (fast!) assembly

 How long to translate C into good (fast!) parallel code?
" General problem is very hard to solve

" Present state: specialized solutions for specific cases

" Your opportunity to become famous!

Why So Many Parallel Programming Languages?

Thread-Level Parallelism II (5)

Garcia, Nikoli�

§ Number of choices is indication of
ú No universal solution

 Needs are very problem specific

ú E.g.,
 Scientific computing/machine learning (matrix multiply)
 Webserver: handle many unrelated requests simultaneously
 Input / output: it’s all happening simultaneously!

§ Specialized languages for different tasks
ú Some are easier to use (for some problems)
ú None is particularly “easy” to use

§ 61C
ú Parallel language examples for high-performance

computing
ú OpenMP

Parallel Programming Languages

þ

Thread-Level Parallelism II (7)

Garcia, Nikoli�

§ Serial execution:

for (int i=0; i<100; i++) {

…

}

§Parallel Execution:

Parallel Loops

for (int i=0; i<25; i++)
{

…

}

for (int i=25; i<50; i++)
{

…

}

for (int i=50; i<75; i++)
{

…

}

for (int i=75; i<100; i++)
{

…

}

Thread-Level Parallelism II (8)

Garcia, Nikoli�

#include <omp.h>

#pragma omp parallel for

for (int i=0; i<100; i++) {

…

}

Parallel for in OpenMP

Thread-Level Parallelism II (9)

Garcia, Nikoli�

OpenMP Example

$ gcc-5 -fopenmp for.c;./a.out

% gcc -Xpreprocessor -fopenmp -

lomp -o for for.c; ./for

thread 0, i = 0

thread 1, i = 3

thread 2, i = 6

thread 3, i = 8

thread 0, i = 1

thread 1, i = 4

thread 2, i = 7

thread 3, i = 9

thread 0, i = 2

thread 1, i = 5

00 01 02 13 14 15 26 27 38 39

9

The call to find the maximum number of threads that are available to do work is
omp_get_max_threads() (from omp.h).

Thread-Level Parallelism II (10)

Garcia, Nikoli�

§ C extension: no new language to learn

§ Multi-threaded, shared-memory
parallelism
ú Compiler Directives, #pragma

ú Runtime Library Routines, #include <omp.h>

§ #pragma
ú Ignored by compilers unaware of OpenMP

ú Same source for multiple architectures
 E.g., same program for 1 & 16 cores

§ Only works with shared memory

OpenMP

Thread-Level Parallelism II (11)

Garcia, Nikoli�

§ Fork - Join Model:

§ OpenMP programs begin as single process (main thread)
ú Sequential execution

§ When parallel region is encountered
ú Master thread “forks” into team of parallel threads
ú Executed simultaneously
ú At end of parallel region, parallel threads ”join”, leaving only master

thread

§ Process repeats for each parallel region
ú Amdahl’s Law?

OpenMP Programming Model

Thread-Level Parallelism II (12)

Garcia, Nikoli�

§ OpenMP threads are operating system
(software) threads

§ OS will multiplex requested OpenMP threads
onto available hardware threads

§ Hopefully each gets a real hardware thread
to run on, so no OS-level time-multiplexing

§ But other tasks on machine compete for
hardware threads!

§ Be “careful” (?) when timing results for
Projects!
ú 5AM?
ú Job queue?

What Kind of Threads?

þ

Thread-Level Parallelism II (14)

Garcia, Nikoli�

Example 2: Computing p

http:/ / openmp.org/ mp-documents/ omp-hands-on-SC08.pdf

In[1]:= Integrate[4*Sqrt[1-x^2] , {x,0,1}] ß Tested using Mathematica
Out[1]= Pi

In[2]:= Integrate[(4/(1+x^2)) , {x,0,1}]
Out[2]= Pi

0.0 1.0

2.0

4.0

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Thread-Level Parallelism II (15)

Garcia, Nikoli�

Sequential p = 3.1415926535897932384626433832795028841971693993751…

pi = 3.142425985001

" Resembles p, but not very accurate

" Let’s increase num_steps and parallelize

Thread-Level Parallelism II (16)

Garcia, Nikoli�

Parallelize (1) …

" Problem: each thread
needs access to the

shared variable sum

" Code runs sequentially

…

Thread-Level Parallelism II (17)

Garcia, Nikoli�

Parallelize (2) …

sum[0] sum[1]

1. Compute

sum[0] and sum[1]

in parallel

2. Compute

sum = sum[0]+sum[1]
sequentially

Thread-Level Parallelism II (18)

Garcia, Nikoli�

Parallel p & Trial Run

i = 1, id = 1

i = 0, id = 0

i = 2, id = 2

i = 3, id = 3

i = 5, id = 1

i = 4, id = 0

i = 6, id = 2

i = 7, id = 3

i = 9, id = 1

i = 8, id = 0

pi = 3.142425985001

18

Thread-Level Parallelism II (19)

Garcia, Nikoli�

Scale up: num_steps = 106

pi =

3.141592653590

You verify how many
digits are correct …

19

Thread-Level Parallelism II (20)

Garcia, Nikoli�

Can We Parallelize Computing sum?

Summation inside parallel

section

" Insignificant speedup in this

example, but …

" pi = 3.138450662641

" Wrong! And value changes

between runs?!

" What‘s going on?

Always looking for ways to

beat Amdahl’s Law …

20

Thread-Level Parallelism II (21)

Garcia, Nikoli�

" Operation is really

pi = pi + sum[id]

" What if >1 threads reads current

(same) value of pi, computes the

sum, stores the result back to pi?

" Each processor reads same

intermediate value of pi!

" Result depends on who gets there

when

" A “race” à result is

not deterministic

What’s Going On?

21

þ

Thread-Level Parallelism II (23)

Garcia, Nikoli�

§ Problem:

ú Limit access to shared resource to 1 actor at a time

ú E.g. only 1 person permitted to edit a file at a time

 otherwise changes by several people get all mixed up

§ Solution:

Synchronization

" Take turns:
" Only one person get’s the

microphone & talks at a time

" Also good practice for

classrooms, btw …

Thread-Level Parallelism II (24)

Garcia, Nikoli�

§ Computers use locks to control access

to shared resources

ú Serves purpose of microphone in example

ú Also referred to as “semaphore”

§ Usually implemented with a variable

ú int lock;

 0 for unlocked

 1 for locked

Locks

Thread-Level Parallelism II (25)

Garcia, Nikoli�

// wait for lock released

while (lock != 0) ;

// lock == 0 now (unlocked)

// set lock

lock = 1;

// access shared resource ...

// e.g. pi

// sequential execution! (Amdahl ...)

// release lock

lock = 0;

Synchronization with Locks

Thread-Level Parallelism II (26)

Garcia, Nikoli�

while (lock != 0) ;

lock = 1;

// critical section

lock = 0;

Lock Synchronization
Thread 1 Thread 2

while (lock != 0) ;

lock = 1;

// critical section

lock = 0;

26

" Thread 2 finds lock not set,

before thread 1 sets it

" Both threads believe they got

and set the lock!

Try as you like, this problem has no solution, not even at the assembly level.

Unless we introduce new instructions, that is! (next lecture)

Thread-Level Parallelism II (27)

Garcia, Nikoli�

§ OpenMP as simple parallel extension to C

ú Threads level programming with
parallel for pragma

ú j C: small so easy to learn, but not very high
level and it’s easy to get into trouble

§ Race conditions – result of program

depends on chance (bad)

ú Need assembly-level instructions to help with
lock synchronization

ú …next time

And, in Conclusion, …

þ

