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Languages Supporting Parallel Programming

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALIA
APL = LabVIBN cala
Axum Bffel Limbo SN
Chapel Erlang Linda R
Cilk Fortan 90 MultiLisp Sackless Python
Clean Go Modula-3 QuperPascal
Clojure lo Occam VHDL
Concurrent G Janus occam-T XC
Which one to pick?
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Why So Many Parallel Programming Languages?

= Why “intrinsics” ?
o TO Intel: fix your #()&$! compiler, thanks. ..

= |t's happening ... but

= SIMD features are continually added to compilers
(Intel, gcc)

o |ntense area of research

= Research progress:

= 20+ years to translate C into good (fast!) assembly

- How long to translate C into good (fast!) parallel code?
General problem is very hard to solve
Present state: specialized solutions for specific cases
Your opportunity to become famous!

Garcia, Nikoli¢
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Parallel Programming Languages

= Number of choices is indication of
= No universal solution
- Needs are very problem specific

= E.Q,
- Scientific computing/machine learning (matrix multiply)
- Webserver: handle many unrelated requests simultaneously

- Input / output: it’s all happening simultaneously!
= Joecialized languages for different tasks

= Some are easier to use (for some problems)
= None is particularly “easy” to use

= 61C

= Parallel language examples for high-performance
computing
o OpenMP |Z[
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Parallel Loops

= Serial execution:
for (int i1=0; i<100;

= Parallel Execution:

i++) {

for (int i=0; i<25; i++)

{

}

for (int

{
}

i=25; i<50; i++) for (int i=50; i<75; i++)

{

}

for (int i=75; i<100; i++)

{

}
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Parallel for in OpenMP

#include <omp.h>

#pragma omp parallel for
for (int 1=0; 1<100; i++) {

Garcia, Nikoli¢
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OpenMP Example

/* clang —Xpreprocessor —-fopenmp -lomp -0 for for.c x/

include <stdio.h>
include <omp.h>
nt main()

*

| A bt

omp_set_num_threads(4);
int al[l ={eo, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int N = sizeof(a)/sizeof(int);

1

2

3

4

5

6

7

8

9

10

11 #pragma omp parallel for

12 for (int i=0; i<N; i++) {

13 printf("thread %d, i = %2d\n",

14 omp_get_thread_num(), i);

15 ali] = alil + 10 x omp_get_thread_num();
16
17
18
19

by

for (int i=@; i<N; i++) printf("%02d ", alil);
printf("\n");

20 }

$ gcc-5 -fopenmp for.c;./a.out

% gcc -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for

thread 0, 1 = 0
thread 2, i = 6
thread 0, i = 1
thread 2, i = 7
thread 0, 1 = 2
00 01 02 26 27

The call to find the maximum number of threads that are available to do work is

omp get max threads() (from omp.h).

Berkeiey
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OpenMP

= Cextension: no new language to learn
= Multi-threaded, shared-memory
parallelism
= Compiler Directives, #pragma
= Runtime Library Routines, #include <omp.h>
= }pragma
= |gnored by compilers unaware of OpenMP

= Same source for multiple architectures
- E.g., same program for 1 & 16 cores

= Only works with shared memory

B k 1 ' Garcia, Nikolié‘
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OpenMP Programming Model

= Fork - Join Model:

master
thread

{ parallel region } { parallel region }

= OpenMP programs begin as single process (main thread)
o Sequential execution

= When parallel region is encountered
o Master thread “forks” into team of parallel threads
o Executed simultaneously

o At end of parallel region, parallel threads “join”, leaving only master
thread

= Process repeats for each parallel region
o Amdahl’s Law?

B k 1 ' Garcia, NikoIi(:‘
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sic: What Kind of Threads?

= OpenMP threads are operating system
(software) threads

= OSwill multiplex requested OpenMP threads
onto available hardware threads

= Hopefully each gets a real hardware thread
to run on, so no OS-level time-multiplexing

= But other tasks on machine compete for
hardware threads!

= Be “careful” (?) when timing results for
Projects!

o 5AM?
: ?
Job queue” V]

B€I‘k€1€ ~ Garcia, Nikoli¢.
...................... Y Thread-Level Parallelism Il (12)



Computing ©t



Example 2: Computing

In[1]:=
Out[1l]= P1
In[2]:= Integrate[ (4/(1+xA2)) , {x,0,1}]
Out[2]= P1i

Numerical Integration
Mathematically, we know that:

1
4.0
S dx=1TC

AN (1+2)

4.0 (-

o \ We can approximate the
2 \ integral as a sum of
=20 \ rectangles:

<

] N

T }Emesz1t

i=0

Where each rectangle has
0.0 X 10 width Ax and height F(x,) at
the middle of interval i.

http:// openmp.org/ mp-documents/ omp-hands-on-SC08.pdf
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Integrate[ 4*Sqgrt[1-xA2] , {x,0,1}] < Tested using Mathematica
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6ic Seq uential 7t = 3.us92653589793238462643383270502884 197169399375 1...

#inc lude tdio.

void main () {

const long num_steps = 10;

double step = 1.6/((double)num_steps);

double sum = 0.0;

for (int 1=0; i<num_steps; i++) {
double x = (1+0.5) *xstep;
sum += 4.0*xstep/(1.0+x*x);

}

printf ("pi 6.127\n", sum);

}
pi = 3.142425985001

 Resembles &, but not very accurate
* Let’'s increase num_steps and parallelize

B k 1 ' Garcia, Nikolié‘
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® Parallelize (1) ...

#include <stdio.!

void main () {
const long num_steps = 10;
double step = 1.0/((double)num_steps);
double sum = 0.0;
#pragma parallel for D
for (int 1i=0; i<num_steps; i++) {
double x = (i+0.5) *step;

sum += 4.0*Step/(1.0+X*X); _
}

printf ("pi s6.12f\n", sum);  Problem: each thread
} needs access to the
shared variable sum
« Code runs sequentially

Garcia, Nikoli¢
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Parallelize ) ...

1. Compute
sum[0] and sum[ 1]
in parallel

4.0

2. Compute
sum = sum[O]+sum[1]
sequentially

F(x) = 4.0/(1+x2)

0.0 X
sum[O0] sum[1]

Garcia, Nikoli¢
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Parallel ... Trial Run

#1ncC lude <stdio.h= : J— : -
#include <omp.h> AL 1 ’ 1d 1
void main () {

const int NUM_THREADS = 4; L . —

const long num_steps = 10; 1 2 ’ id 2

double step = 1.0/((double)num_steps); . : _
double sum[NUM_THREADS]; 1= 3, id = 3
for (int i=0; i<NUM_THREADS; i++) sum[i] = @;

omp_set_num_threads (NUM_THREADS); L = S 4 id = 1
#pragma omp parallel
{
int id = omp_get_thread_num(); . .
for (int i=id; i<num_steps; i+=NUM THREADS) { 1 = 6 ’ id = 2
double x = (i+@.5) *step; . .
sum[id] += 4.0@%step/(1.0+x*x); 1l = 7 ’ id = 3
printf("1i =%3d, id =%3d\n", 1, id); . .
double pi = 0;
for (int i1=0; i<NUM_THREADS; i++) pi += sum[i]; )
printf ("pi = %6.12f\n", pi); p1 = 3.142425985001

B k 1 , Garcia, NikoIi(:‘
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Scale up: num steps = 10°

#include <stdio.h
#inc lude

void main () {
const int NUM_THREADS = 4;
const long num_steps = 1000000;
double step = 1.0/((double)num_steps);
double sum[NUM_THREADS];
for (int i=0; i<NUM_THREADS; i++) sum[i] = 0;
omp_set_num_threads (NUM_THREADS) ;
#pragma omp parallel
{
int id = omp_get_thread_num();
for (int i=id; i<num_steps; i+=NUM_THREADS) {
double x = (1i+0.5) *step;
sum[id] += 4.0%step/(1.0+x*x);

}
}
double pi = 0;
for (int i=@; i<NUM_THREADS; i++) pi += sum[i];
printf ("p! %6.127T\n", pi);

Berkeley

UNIVERSITY OF CALIFORNIA
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pi =
3.141592653590

You verify how many
digits are correct ...

Garcia, Nikoli¢
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Can We Parallelize Computing sum?

#include <stdio.h
¥1include <omp.h: Always looking for ways to
void main () { beat Amdahl’s Law ...

const int NUM_THREADS = 1000;

const long num_steps = 100000;

double step = 1.0/((double)num_steps);

double sum[NUM_THREADS];

for (int 1=0; i<NUM_THREADS; i++) sum[i] = 0;

double pi = 0;

omp_set_num_threads (NUM_THREADS) ; ST
_:.ioragl‘.ag—'_:"' p parallel - ummation inside parallel

{ section
int id = omp_get_thread_num();

for (int i=id; i<num_steps; i+=NUM_THReaps) { ° Insignificant speedup in this

s R e TR example, but ...
: sum[id] += 4.0*step/(1.0+x*x); . pi _3.138450662641
: pi += sum(id]; <G ———— \\rONg! And value changes
printf ("pi = %6.12f\n", pi); between r.uns?!
¥ * What's going on?

Garcia, Nikoli¢
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What's Going On*?

#include <stdio.h
#include <omp.h>

void main () {
const int NUM_THREADS = 1000,
const long num_steps = 100000;
double step = 1.0/((double)num_steps);
double sum[NUM_THREADS];
for (int 1=0; i<NUM_THREADS; i++) sum[i] = 0;
double pi = 0;

omp_set_num_threads(NUM_THREADS); *  Operation is really
#pragma omp parallel pi = pi + sum[id]
{ | |  Whatif >1threads reads current
int id = omp_get_thread_num(); (same) value of pi, computes the

for (int i=id; i<num_steps; i+=NUM_THREADS) {

%,
double x = (i+0.5) *step; sum, stores the result back to pi*

sum[id] += 4.@xstep/(1.0+x*x); * Each processor reads same
} intermediate value of pi!
pi += sum(id]; < —— ——— . Pcsult depends on who gets there
i ) T when
} printf ("pl = %6.127\n", pi); «  A“race” > resultis

not deterministic

B k 1 ' Garcia, NikoIi(:‘
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&i8: Synchronization
= Problem:
= Limit access to shared resource to 1 actor at a time

= E.g. only 1 person permitted to edit a file at a time
- otherwise changes by several people get all mixed up

= Solution:

* Take turns:
* Only one person get’s the
microphone & talks at a time
* Also good practice for
classrooms, btw ...

Garcia, Nikoli¢
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Locks

= Computers use locks to control access
to shared resources
= Serves purpose of microphone in example
= Also referred to as “semaphore”

= Usually implemented with a variable
o int lock;
= 0 for unlocked
- 1 for locked

B I‘k 1 ~ Garcia, Nikoli¢
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3 Synchronization with Locks

o

while (lock != 0)

7
lock = 1;
// access shared resource ...

// e.g. pi
// sequential execution! (Amdahl ...)

lock = 0;

Garcia, Nikoli¢
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Lock Synchronization
Thread 1 Thread 2

while (lock != 0) ;

while (lock != 0) ;

lock « Thread 2 finds lock not set,
before thread 1sets it
* Both threads believe they got
and set the lock!

li
=
we

lock

1;

lock

0;
lock

0;

Try as you like, this problem has no solution, not even at the assembly level.
Unless we introduce new instructions, that is! (next lecture)

B k 1 ' Garcia, Nikolié‘
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ste: And, in Conclusion, ...

= OpenMP as simple parallel extension to C

= Threads level programming with
parallel for pragma

=~ C: small so easy to learn, but not very high
level and it's easy to get into frouble
= Race conditions —result of program
depends on chance (bad)

= Need assembly-level instructions to help with
lock synchronization

o ...next time ]
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