
UC Berkeley
Teaching Professor

Dan Garcia

UC Berkeley
Professor

Bora Nikoli�

cs61c.org

Great Ideas
in

Computer Architecture
(a.k.a. Machine Structures)

Garcia, Nikoli�

Thread-Level Parallelism III

Thread-Level Parallelism III (3)

Garcia, Nikoli�

§ OpenMP as simple parallel extension to C
ú Threads level programming with parallel for pragma
ú j C: small so easy to learn, but not very high level and it’s easy

to get into trouble

for (i=0; i<max; i++) zero[i] = 0;

§ Breaks for loop into chunks, and allocate each to a
separate thread
ú e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1

§ Must have relatively simple “shape” for an OpenMP-
aware compiler to be able to parallelize it
ú Necessary for the run-time system to be able to determine how

many of the loop iterations to assign to each thread

§ No premature exits from the loop allowed
ú i.e. No break, return, exit, goto statements In general, don’t jump

outside of any pragma block

Review: OpenMP Building Block: for loop

Thread-Level Parallelism III (4)

Garcia, Nikoli�

Review: Data Races and Synchronization

§ Two memory accesses form a data race if
from different threads access same location,
at least one is a write, and they occur one
after another

§ If there is a data race, result of program
varies depending on chance (which thread
first?)

§ Avoid data races by synchronizing writing
and reading to get deterministic behavior

§ Synchronization done by user-level routines
that rely on hardware synchronization
instructions

Thread-Level Parallelism III (5)

Garcia, Nikoli�

§ Solution:
ú Atomic read/write
ú Read & write in single instruction

 No other access permitted between read and write

ú Note:
 Must use shared memory (multiprocessing)

§ Common implementations:
ú Atomic swap of register µ memory
ú Pair of instructions for “linked” read and write

 write fails if memory location has been “tampered” with
after linked read

§ RISC-V has variations of both, but for simplicity
we will focus on the former

Hardware Synchronization

Thread-Level Parallelism III (6)

Garcia, Nikoli�

RISC-V Atomic Memory Operations (AMOs)
§ AMOs atomically perform an operation on an

operand in memory and set the destination register
to the original memory value

§ R-Type Instruction Format: Add, And, Or, Swap,
Xor, Max, Max Unsigned, Min, Min Unsigned

Load from address in rs1 to “t”

rd = ”t”, i.e., the value in memory

Store at address in rs1 the calculation

“t” <operation> rs2

aq(acquire) and rl(release) to insure in order

execution

amoadd.w rd,rs2,(rs1):

t = M[x[rs1]];

x[rd] = t;

M[x[rs1]] = t + x[rs2]

Thread-Level Parallelism III (7)

Garcia, Nikoli�

RISCV Critical Section
§ Assume that the lock is in memory location stored in register a0

§ The lock is “set” if it is 1; it is “ free” if it is 0 (it’s initial value)

li t0, 1 # Get 1 to set lock

Try: amoswap.w.aq t1, t0, (a0) # t1 gets old lock value

while we set it to 1

bnez t1, Try # if it was already 1, another

thread has the lock,

so we need to try again

… critical section goes here …

amoswap.w.rl x0, x0, (a0) # store 0 in lock to release

Thread-Level Parallelism III (8)

Garcia, Nikoli�

Lock Synchronization

Broken Synchronization

while (lock != 0) ;

lock = 1;

// critical section

lock = 0;

Fix (lock is at location (a0))

li t0, 1

Try: amoswap.w.aq t1, t0, (a0)

bnez t1, Try

Locked:

critical section

Unlock:

amoswap.w.rl x0, x0, (a0)

Thread-Level Parallelism III (9)

Garcia, Nikoli�

OpenMP Locks

Thread-Level Parallelism III (10)

Garcia, Nikoli�

§ Typically are used in libraries of higher level parallel
programming constructs

§ E.g. OpenMP offers #pragmas for common cases:

ú critical

ú atomic

ú barrier

ú ordered

§ OpenMP offers many more features

ú E.g., private variables, reductions

ú See online documentation

ú Or tutorial at

 http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

Synchronization in OpenMP

Thread-Level Parallelism III (11)

Garcia, Nikoli�

OpenMPCritical Section
Mutual exclusion

" Only one thread at a time can

enter a critical region.

(Threads wait their turn)

Thread-Level Parallelism III (12)

Garcia, Nikoli�

Deadlock
§ Deadlock: a system state in which no progress is possible

§ Dining Philosopher’s Problem:

ú Think until the left fork is available; when it is, pick it up

ú Think until the right fork is available; when it is, pick it up

ú When both forks are held, eat for a fixed amount of time

ú Then, put the right fork down

ú Then, put the left fork down

ú Repeat from the beginning

§ Solution?

Thread-Level Parallelism III (13)

Garcia, Nikoli�

§ Elapsed wall clock time:

double omp_get_wtime(void);

ú Returns elapsed wall clock time in seconds

ú Time is measured per thread, no guarantee
can be made that two distinct threads
measure the same time

ú Time is measured from “some time in the
past”, so subtract results of two calls to
omp_get_wtime to get elapsed time

OpenMP Timing

þ

Thread-Level Parallelism III (15)

Garcia, Nikoli�

§ SMP: (Shared Memory) Symmetric Multiprocessor

ú Two or more identical CPUs/Cores

ú Single shared coherent memory

(Chip) Multicore Multiprocessor

Thread-Level Parallelism III (16)

Garcia, Nikoli�

Multiprocessor Key Questions

§ Q1 – How do they share data?

§ Q2 – How do they coordinate?

§ Q3 – How many processors can be
supported?

Thread-Level Parallelism III (17)

Garcia, Nikoli�

Shared Memory Multiprocessor (SMP)

§ Q1 – Single address space shared by all
processors/ cores

§ Q2 – Processors coordinate/ communicate
through shared variables in memory (via
loads and stores)

ú Use of shared data must be coordinated via
synchronization primitives (locks) that allow access
to data to only one processor at a time

§ All multicore computers today are SMP

Thread-Level Parallelism III (18)

Garcia, Nikoli�

Multiprocessor Caches

§ Memory is a performance bottleneck even with one processor

§ Use caches to reduce bandwidth demands on main memory

§ Each core has a local private cache holding data it has accessed
recently

§ Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

Thread-Level Parallelism III (19)

Garcia, Nikoli�

Shared Memory and Caches

§ What if?
ú Processors 1 and 2 read Memory[1000] (value 20)

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Thread-Level Parallelism III (20)

Garcia, Nikoli�

Shared Memory and Caches

§ Now:

ú Processor 0 writes Memory[1000] with 40

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory
I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

1000 20

þ

Thread-Level Parallelism III (22)

Garcia, Nikoli�

Keeping Multiple Caches Coherent
§ Architect’s job: shared memory
è keep cache values coherent

§ Idea: When any processor has cache miss
or writes, notify other processors via
interconnection network
ú If only reading, many processors can have copies
ú If a processor writes, invalidate any other copies

§ Write transactions from one processor,
other caches “snoop” the common
interconnect checking for tags they hold
ú Invalidate any copies of same address modified

in other cache

Thread-Level Parallelism III (23)

Garcia, Nikoli�

§ Each cache tracks state of each block
in cache:

1. Shared: up-to-date data, other
caches may have a copy

2. Modified: up-to-date data, changed
(dirty), no other cache has a copy, OK
to write, memory out-of-date (i.e.,
write back)

How Does HW Keep $ Coherent?

Thread-Level Parallelism III (24)

Garcia, Nikoli�

§ Each cache tracks state of each block in cache:

3. Exclusive: up-to-date data, no other cache has a copy,
OK to write, memory up-to-date

ú Avoids writing to memory if block replaced
ú Supplies data on read instead of going to memory

4. Owner: up-to-date data, other caches may have a
copy (they must be in Shared state)

ú This cache is one of several with a valid copy of the cache line,
but has the exclusive right to make changes to it. It must
broadcast those changes to all other caches sharing the line.
The introduction of owned state allows dirty sharing of data, i.e.,
a modified cache block can be moved around various caches
without updating main memory. The cache line may be
changed to the Modified state after invalidating all shared
copies, or changed to the Shared state by writing the
modifications back to main memory. Owned cache lines must
respond to a snoop request with data.

Two Optional Performance Optimizations of Cache Coherency
via New States

Thread-Level Parallelism III (25)

Garcia, Nikoli�

§ Memory access to cache is either

Modified (in cache)

Owned (in cache)

Exclusive (in cache)

Shared (in cache)

Invalid (not in cache)

Common Cache Coherency Protocol: MOESI

Snooping/Snoopy Protocols
e.g., the Berkeley Ownership Protocol

See https://en.wikipedia.org/wiki/MOESI_protocol

Thread-Level Parallelism III (26)

Garcia, Nikoli�

§ Example, now with cache coherence

ú Processors 1 and 2 read Memory[1000]

ú Processor 0 writes Memory[1000] with 40

Shared Memory and Caches

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory

I/O

0 1 2

1000 20 1000 20

Processor 0

Write

Invalidates

Other Copies

1000

1000 40

1000 40

Thread-Level Parallelism III (27)

Garcia, Nikoli�

Cache Coherency Tracked by Block

§ Suppose block size is 32 bytes

§ Suppose Processor 0 reading and writing variable X,
Processor 1 reading and writing variable Y

§ Suppose in X location 4000, Y in 4012

§ What will happen?

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Thread-Level Parallelism III (28)

Garcia, Nikoli�

Coherency Tracked by Cache Block

§ Block ping-pongs between two
caches even though processors
are accessing disjoint variables

§ Effect called false sharing

§ How can you prevent it?

Thread-Level Parallelism III (29)

Garcia, Nikoli�

Remember The 3Cs?

§ Compulsory (cold start or process migration, 1st
reference):
ú First access to block, impossible to avoid; small effect for long-

running programs
ú Solution: increase block size (increases miss penalty; very large

blocks could increase miss rate)

§ Capacity (not compulsory and…)
ú Cache cannot contain all blocks accessed by the program even

with perfect replacement policy in fully associative cache
ú Solution: increase cache size (may increase access time)

§ Conflict (not compulsory or capacity and…):
ú Multiple memory locations map to the same cache location
ú Solution 1: increase cache size
ú Solution 2: increase associativity (may increase access time)
ú Solution 3: improve replacement policy, e.g.. LRU

Thread-Level Parallelism III (30)

Garcia, Nikoli�

§ Misses caused by coherence traffic
with other processor

§ Also known as communication misses
because represents data moving
between processors working together
on a parallel program

§ For some parallel programs,
coherence misses can dominate total
misses

Fourth “C” of Cache Misses! Coherence Misses

Thread-Level Parallelism III (31)

Garcia, Nikoli�

§ OpenMP as simple parallel extension to C
ú Threads level programming with parallel
for pragma, private variables,
reductions, …

ú j C: small so easy to learn, but not very high
level and it’s easy to get into trouble

§ TLP

ú Cache coherency implements shared memory
even with multiple copies in multiple caches

ú False sharing a concern; watch block size!

And, in Conclusion, …

þ

