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§ OpenMP as simple parallel extension to C
ú Threads level programming with parallel for pragma
ú j C: small so easy to learn, but not very high level and it’s easy 

to get into trouble

for (i=0; i<max; i++) zero[i] = 0;

§ Breaks for loop into chunks, and allocate each to a 
separate thread
ú e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1

§ Must have relatively simple “shape”  for an OpenMP-
aware compiler to be able to parallelize it
ú Necessary for the run-time system to be able to determine how 

many of the loop iterations to assign to each thread

§ No premature exits from the loop allowed
ú i.e. No break, return, exit, goto statements In general, don’t jump 

outside of any pragma block

Review: OpenMP Building Block: for loop
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Review: Data Races and Synchronization

§ Two memory accesses form a data race if 
from different threads access same location, 
at least one is a write, and they occur one 
after another

§ If there is a data race, result of program 
varies depending on chance (which thread 
first?)

§ Avoid data races by synchronizing writing 
and reading to get deterministic behavior

§ Synchronization done by user-level routines 
that rely on hardware synchronization 
instructions
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§ Solution: 
ú Atomic read/write 
ú Read & write in single instruction

  No other access permitted between read and write

ú Note:
  Must use shared memory (multiprocessing)

§ Common implementations:
ú Atomic swap of register µ memory
ú Pair of instructions for “linked” read and write

  write fails if memory location has been “tampered” with 
after linked read

§ RISC-V has variations of both, but for simplicity 
we will focus on the former

Hardware Synchronization
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RISC-V Atomic Memory Operations (AMOs)
§ AMOs atomically perform an operation on an 

operand in memory and set the destination register 
to the original memory value

§ R-Type Instruction Format: Add, And, Or, Swap, 
Xor, Max, Max Unsigned, Min, Min Unsigned

Load from address in rs1 to “t”

rd = ”t”, i.e., the value in memory

Store at address in rs1 the calculation 

“t” <operation> rs2

aq(acquire) and rl(release) to insure in order 

execution

amoadd.w rd,rs2,(rs1):

t = M[x[rs1]]; 

x[rd] = t; 

M[x[rs1]] = t + x[rs2]
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RISCV Critical Section
§ Assume that the lock is in memory location stored in register a0

§ The lock is “set”  if it is 1; it is “ free”  if it is 0 (it’s initial value)

li           t0, 1        # Get 1 to set lock

Try:  amoswap.w.aq t1, t0, (a0) # t1 gets old lock value

# while we set it to 1

bnez t1, Try      # if it was already 1, another

# thread has the lock,

# so we need to try again

… critical section goes here …

amoswap.w.rl x0, x0, (a0) # store 0 in lock to release
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Lock Synchronization

Broken Synchronization

while (lock != 0) ;

lock = 1; 

// critical section

lock = 0; 

Fix (lock is at location (a0))

li        t0, 1

Try: amoswap.w.aq t1, t0, (a0)

bnez t1, Try

Locked:

# critical section

Unlock:

amoswap.w.rl x0, x0, (a0)
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OpenMP Locks
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§ Typically are used in libraries of higher level parallel 
programming constructs

§ E.g. OpenMP offers #pragmas for common cases:

ú critical

ú atomic

ú barrier

ú ordered

§ OpenMP offers many more features

ú E.g., private variables, reductions

ú See online documentation

ú Or tutorial at  

  http://openmp.org/mp-documents/omp-hands-on-SC08.pdf 

Synchronization in OpenMP
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OpenMPCritical Section
Mutual exclusion

" Only one thread at a time can 

enter a critical region. 

(Threads wait their turn)
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Deadlock
§ Deadlock: a system state in which no progress is possible

§ Dining Philosopher’s Problem:

ú Think until the left fork is available; when it is, pick it up

ú Think until the right fork is available; when it is, pick it up

ú When both forks are held, eat for a fixed amount of time

ú Then, put the right fork down

ú Then, put the left fork down

ú Repeat from the beginning

§ Solution?
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§ Elapsed wall clock time:

double omp_get_wtime(void); 

ú Returns elapsed wall clock time in seconds

ú Time is measured per thread, no guarantee 
can be made that two distinct threads 
measure the same time

ú Time is measured from “some time in the 
past”, so subtract results of two calls to 
omp_get_wtime to get elapsed time

OpenMP Timing

þ
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§ SMP: (Shared Memory) Symmetric Multiprocessor

ú Two or more identical CPUs/Cores

ú Single shared coherent memory

(Chip) Multicore Multiprocessor
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Multiprocessor Key Questions

§ Q1 – How do they share data?

§ Q2 – How do they coordinate?

§ Q3 – How many processors can be 
supported?
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Shared Memory Multiprocessor (SMP)

§ Q1 – Single address space shared by all 
processors/ cores

§ Q2 – Processors coordinate/ communicate 
through shared variables in memory (via 
loads and stores)

ú Use of shared data must be coordinated via 
synchronization primitives (locks) that allow access 
to data to only one processor at a time

§ All multicore computers today are SMP
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Multiprocessor Caches

§ Memory is a performance bottleneck even with one processor

§ Use caches to reduce bandwidth demands on main memory

§ Each core has a local private cache holding data it has accessed 
recently

§ Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O
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Shared Memory and Caches

§ What if? 
ú Processors 1 and 2 read Memory[1000] (value 20)

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000 

1000 1000

20

0 1 2
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Shared Memory and Caches

§ Now:

ú Processor 0 writes Memory[1000] with 40

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory
I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

1000 20

þ
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Keeping Multiple Caches Coherent
§ Architect’s job: shared memory 
è keep cache values coherent

§ Idea: When any processor has cache miss 
or writes, notify other processors via 
interconnection network
ú If only reading, many processors can have copies
ú If a processor writes, invalidate any other copies

§ Write transactions from one processor, 
other caches  “snoop”  the common 
interconnect checking for tags they hold
ú Invalidate any copies of same address modified 

in other cache
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§ Each cache tracks state of each block
in cache:

1. Shared:  up-to-date data, other 
caches may have a copy

2. Modified: up-to-date data, changed 
(dirty), no other cache has a copy, OK 
to write, memory out-of-date (i.e., 
write back)

How Does HW Keep $ Coherent?
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§ Each cache tracks state of each block in cache:

3. Exclusive: up-to-date data, no other cache has a copy, 
OK to write, memory up-to-date

ú Avoids writing to memory if block replaced
ú Supplies data on read instead of going to memory

4. Owner:  up-to-date data, other caches may have a 
copy (they must be in Shared state)

ú This cache is one of several with a valid copy of the cache line, 
but has the exclusive right to make changes to it. It must 
broadcast those changes to all other caches sharing the line. 
The introduction of owned state allows dirty sharing of data, i.e., 
a modified cache block can be moved around various caches 
without updating main memory. The cache line may be 
changed to the Modified state after invalidating all shared 
copies, or changed to the Shared state by writing the 
modifications back to main memory. Owned cache lines must 
respond to a snoop request with data.

Two Optional Performance Optimizations of Cache Coherency 
via New States
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§ Memory access to cache is either

Modified (in cache)

Owned (in cache)

Exclusive (in cache)

Shared (in cache)

Invalid (not in cache)

Common Cache Coherency Protocol: MOESI

Snooping/Snoopy Protocols
e.g., the Berkeley Ownership Protocol

See https://en.wikipedia.org/wiki/MOESI_protocol
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§ Example, now with cache coherence

ú Processors 1 and 2 read Memory[1000]

ú Processor 0 writes Memory[1000] with 40

Shared Memory and Caches

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory

I/O

0 1 2

1000 20 1000 20

Processor 0

Write

Invalidates

Other Copies

1000

1000 40

1000 40
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Cache Coherency Tracked by Block

§ Suppose block size is 32 bytes

§ Suppose Processor 0 reading and writing variable X, 
Processor 1 reading and writing variable Y

§ Suppose in X location 4000,  Y in 4012

§ What will happen?

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory
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Coherency Tracked by Cache Block

§ Block ping-pongs between two 
caches even though processors 
are accessing disjoint variables

§ Effect called false sharing 

§ How can you prevent it?
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Remember The 3Cs?

§ Compulsory (cold start or process migration, 1st 
reference):
ú First access to block, impossible to avoid; small effect for long-

running programs
ú Solution: increase block size (increases miss penalty; very large 

blocks could increase miss rate)

§ Capacity (not compulsory and…)
ú Cache cannot contain all blocks accessed by the program even 

with perfect replacement policy in fully associative cache
ú Solution: increase cache size (may increase access time)

§ Conflict (not compulsory or capacity and…):
ú Multiple memory locations map to the same cache location
ú Solution 1: increase cache size
ú Solution 2: increase associativity (may increase access time)
ú Solution 3: improve replacement policy, e.g.. LRU
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§ Misses caused by coherence traffic 
with other processor

§ Also known as communication misses 
because represents data moving 
between processors working together 
on a parallel program

§ For some parallel programs, 
coherence misses can dominate total 
misses

Fourth “C” of Cache Misses! Coherence Misses
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§ OpenMP as simple parallel extension to C
ú Threads level programming with parallel 
for pragma, private variables, 
reductions, … 

ú j C: small so easy to learn, but not very high 
level and it’s easy to get into trouble

§ TLP

ú Cache coherency implements shared memory 
even with multiple copies in multiple caches

ú False sharing a concern; watch block size!

And, in Conclusion, …

þ


